The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
We’ve already seen how adding the measures
argument can
change ssm_analyze()
from analyzing means to analyzing
correlations. Similarly, we can change it from analyzing all
observations as a single group to analyzing subgroups separately. This
is done using the grouping
argument. This argument needs to
contain a single variable (name or column number) that specifies each
observation’s group. For instance, the Gender
variable in
the jz2017
dataset is a factor with two levels: Female and
Male. To analyze each gender separately, we need to add the
grouping = "Gender"
argument to the function call.
data("jz2017")
results <- ssm_analyze(
data = jz2017,
scales = PANO(),
angles = octants(),
grouping = "Gender"
)
summary(results)
#>
#> Statistical Basis: Mean Scores
#> Bootstrap Resamples: 2000
#> Confidence Level: 0.95
#> Listwise Deletion: TRUE
#> Scale Displacements: 90 135 180 225 270 315 360 45
#>
#>
#> # Profile [Female]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.946 0.907 0.984
#> X-Value 0.459 0.422 0.498
#> Y-Value -0.310 -0.357 -0.266
#> Amplitude 0.554 0.511 0.600
#> Displacement 325.963 321.834 329.805
#> Model Fit 0.889
#>
#>
#> # Profile [Male]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.884 0.839 0.928
#> X-Value 0.227 0.191 0.262
#> Y-Value -0.186 -0.225 -0.147
#> Amplitude 0.294 0.256 0.330
#> Displacement 320.685 313.386 327.985
#> Model Fit 0.824
Note that the output of summary()
looks the same as
previous mean-based analyses except that there are now two Profile
blocks: one for Female and one for Male. A similar modification will
occur if we generate a table and figure.
Profile | Elevation | X.Value | Y.Value | Amplitude | Displacement | Fit |
---|---|---|---|---|---|---|
Female | 0.95 (0.91, 0.98) | 0.46 (0.42, 0.50) | -0.31 (-0.36, -0.27) | 0.55 (0.51, 0.60) | 326.0 (321.8, 329.8) | 0.889 |
Male | 0.88 (0.84, 0.93) | 0.23 (0.19, 0.26) | -0.19 (-0.23, -0.15) | 0.29 (0.26, 0.33) | 320.7 (313.4, 328.0) | 0.824 |
Any number of groups can be analyzed in this way, and the output will contain additional profile blocks, the table will contain additional rows, and the figures will contain additional points or curves. The grouping variable just needs to contain more than one level (i.e., unique value).
Similarly, we can analyze multiple external measures in a single
function call by providing a vector of variables to the
measures
argument instead of a single variable. This can be
done by wrapping the variable names or column numbers with the
c()
or, if they are adjacent columns, with the column
numbers and the :
shortcut. The package functions were
written to analyze all measures and groups within a single
bootstrapping, so adding additional measures and groups should still be
fast.
results2 <- ssm_analyze(
data = jz2017,
scales = PANO(),
angles = octants(),
measures = c("NARPD", "ASPD")
)
summary(results2)
#>
#> Statistical Basis: Correlation Scores
#> Bootstrap Resamples: 2000
#> Confidence Level: 0.95
#> Listwise Deletion: TRUE
#> Scale Displacements: 90 135 180 225 270 315 360 45
#>
#>
#> # Profile [NARPD]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.202 0.168 0.236
#> X-Value -0.062 -0.095 -0.026
#> Y-Value 0.179 0.145 0.214
#> Amplitude 0.189 0.155 0.225
#> Displacement 108.967 98.853 118.517
#> Model Fit 0.957
#>
#>
#> # Profile [ASPD]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.124 0.090 0.157
#> X-Value -0.099 -0.134 -0.063
#> Y-Value 0.203 0.168 0.240
#> Amplitude 0.226 0.188 0.265
#> Displacement 115.927 107.250 124.516
#> Model Fit 0.964
Profile | Elevation | X.Value | Y.Value | Amplitude | Displacement | Fit |
---|---|---|---|---|---|---|
NARPD | 0.20 (0.17, 0.24) | -0.06 (-0.09, -0.03) | 0.18 (0.14, 0.21) | 0.19 (0.15, 0.22) | 109.0 (98.9, 118.5) | 0.957 |
ASPD | 0.12 (0.09, 0.16) | -0.10 (-0.13, -0.06) | 0.20 (0.17, 0.24) | 0.23 (0.19, 0.27) | 115.9 (107.2, 124.5) | 0.964 |
Finally, it is possible to analyze multiple measures within multiple
groups. As you might expect, this requires providing both the
measures
and grouping
arguments to the same
function call. Again, any number of measures and groups is possible. The
profiles in such an analysis will be named “Measure: Group” as
below.
results3 <- ssm_analyze(
data = jz2017,
scales = PANO(),
angles = octants(),
grouping = "Gender",
measures = 10:12)
summary(results3)
#>
#> Statistical Basis: Correlation Scores
#> Bootstrap Resamples: 2000
#> Confidence Level: 0.95
#> Listwise Deletion: TRUE
#> Scale Displacements: 90 135 180 225 270 315 360 45
#>
#>
#> # Profile [PARPD: Female]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.262 0.220 0.305
#> X-Value -0.146 -0.192 -0.100
#> Y-Value 0.120 0.070 0.171
#> Amplitude 0.189 0.137 0.243
#> Displacement 140.524 126.580 155.129
#> Model Fit 0.870
#>
#>
#> # Profile [SCZPD: Female]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.177 0.130 0.218
#> X-Value -0.230 -0.285 -0.173
#> Y-Value -0.047 -0.103 0.006
#> Amplitude 0.235 0.185 0.288
#> Displacement 191.613 178.684 208.113
#> Model Fit 0.845
#>
#>
#> # Profile [SZTPD: Female]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.237 0.194 0.280
#> X-Value -0.130 -0.175 -0.087
#> Y-Value 0.016 -0.037 0.069
#> Amplitude 0.131 0.090 0.180
#> Displacement 172.870 151.247 198.040
#> Model Fit 0.812
#>
#>
#> # Profile [PARPD: Male]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.243 0.193 0.288
#> X-Value -0.035 -0.080 0.015
#> Y-Value 0.114 0.066 0.165
#> Amplitude 0.120 0.075 0.171
#> Displacement 106.881 82.677 129.996
#> Model Fit 0.648
#>
#>
#> # Profile [SCZPD: Male]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.204 0.145 0.260
#> X-Value -0.178 -0.220 -0.136
#> Y-Value -0.017 -0.071 0.039
#> Amplitude 0.179 0.139 0.222
#> Displacement 185.351 167.551 203.091
#> Model Fit 0.917
#>
#>
#> # Profile [SZTPD: Male]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.240 0.186 0.293
#> X-Value -0.037 -0.084 0.011
#> Y-Value 0.029 -0.018 0.079
#> Amplitude 0.047 0.013 0.101
#> Displacement 142.345 68.178 218.702
#> Model Fit 0.424
Profile | Elevation | X.Value | Y.Value | Amplitude | Displacement | Fit |
---|---|---|---|---|---|---|
PARPD: Female | 0.26 (0.22, 0.30) | -0.15 (-0.19, -0.10) | 0.12 (0.07, 0.17) | 0.19 (0.14, 0.24) | 140.5 (126.6, 155.1) | 0.870 |
SCZPD: Female | 0.18 (0.13, 0.22) | -0.23 (-0.29, -0.17) | -0.05 (-0.10, 0.01) | 0.23 (0.19, 0.29) | 191.6 (178.7, 208.1) | 0.845 |
SZTPD: Female | 0.24 (0.19, 0.28) | -0.13 (-0.18, -0.09) | 0.02 (-0.04, 0.07) | 0.13 (0.09, 0.18) | 172.9 (151.2, 198.0) | 0.812 |
PARPD: Male | 0.24 (0.19, 0.29) | -0.03 (-0.08, 0.01) | 0.11 (0.07, 0.17) | 0.12 (0.07, 0.17) | 106.9 (82.7, 130.0) | 0.648 |
SCZPD: Male | 0.20 (0.15, 0.26) | -0.18 (-0.22, -0.14) | -0.02 (-0.07, 0.04) | 0.18 (0.14, 0.22) | 185.4 (167.6, 203.1) | 0.917 |
SZTPD: Male | 0.24 (0.19, 0.29) | -0.04 (-0.08, 0.01) | 0.03 (-0.02, 0.08) | 0.05 (0.01, 0.10) | 142.3 (68.2, 218.7) | 0.424 |
Note that the borders for the “PARDPD: Male” and “SZTPD: Male” blocks
are dashed instead of solid. This indicates that these profiles have low
fit (i.e., \(R^2<.7\)). We could
alternatively hide these such profiles by adding
lowfit = FALSE
as below (noting that the color guide may
change as profiles are dropped).
The final argument to master in this vignette is
contrast
, which allows us to compare two groups or
measures. Setting this argument to TRUE will first generate scores for
each group (or measure), then estimate SSM parameters for these scores,
and finally calculate the difference between the parameters. To keep the
code simpler and to discourage “fishing expeditions,” only two groups or
measures can be compared at a time.
To compare the mean profiles for females and males, we can start with
the same syntax we had before and then add a contrast
argument.
results4 <- ssm_analyze(
data = jz2017,
scales = PANO(),
angles = octants(),
grouping = "Gender",
contrast = TRUE
)
summary(results4)
#>
#> Statistical Basis: Mean Scores
#> Bootstrap Resamples: 2000
#> Confidence Level: 0.95
#> Listwise Deletion: TRUE
#> Scale Displacements: 90 135 180 225 270 315 360 45
#>
#>
#> # Profile [Female]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.946 0.908 0.984
#> X-Value 0.459 0.419 0.498
#> Y-Value -0.310 -0.353 -0.269
#> Amplitude 0.554 0.510 0.599
#> Displacement 325.963 322.251 329.698
#> Model Fit 0.889
#>
#>
#> # Profile [Male]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.884 0.841 0.925
#> X-Value 0.227 0.191 0.261
#> Y-Value -0.186 -0.225 -0.148
#> Amplitude 0.294 0.256 0.331
#> Displacement 320.685 313.293 327.938
#> Model Fit 0.824
#>
#>
#> # Contrast [Male - Female]:
#>
#> Estimate Lower CI Upper CI
#> Δ Elevation -0.062 -0.119 -0.004
#> Δ X-Value -0.232 -0.285 -0.181
#> Δ Y-Value 0.124 0.066 0.183
#> Δ Amplitude -0.261 -0.318 -0.203
#> Δ Displacement -5.278 -13.627 2.178
#> Δ Model Fit -0.066
Note that we have the profile blocks for each group as well as a contrast block. The contrast is made by subtracting the first level of the grouping variable from the second level (e.g., Male - Female). This provides an indication of the direction of the contrast. We can again generate a table and figure to display the results.
Contrast | Elevation | X.Value | Y.Value | Amplitude | Displacement | Fit |
---|---|---|---|---|---|---|
Female | 0.95 (0.91, 0.98) | 0.46 (0.42, 0.50) | -0.31 (-0.35, -0.27) | 0.55 (0.51, 0.60) | 326.0 (322.3, 329.7) | 0.889 |
Male | 0.88 (0.84, 0.93) | 0.23 (0.19, 0.26) | -0.19 (-0.22, -0.15) | 0.29 (0.26, 0.33) | 320.7 (313.3, 327.9) | 0.824 |
Male - Female | -0.06 (-0.12, -0.00) | -0.23 (-0.29, -0.18) | 0.12 (0.07, 0.18) | -0.26 (-0.32, -0.20) | -5.3 (-13.6, 2.2) | -0.066 |
Comparing measures in a group is very similar. Again, all we need to
do is add the contrast
argument to the function call
containing measures
. Here we will use a parameter contrast
to see what they look like.
results5 <- ssm_analyze(
data = jz2017,
scales = PANO(),
angles = octants(),
measures = c("NARPD", "ASPD"),
contrast = TRUE
)
summary(results5)
#>
#> Statistical Basis: Correlation Scores
#> Bootstrap Resamples: 2000
#> Confidence Level: 0.95
#> Listwise Deletion: TRUE
#> Scale Displacements: 90 135 180 225 270 315 360 45
#>
#>
#> # Profile [NARPD]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.202 0.169 0.233
#> X-Value -0.062 -0.097 -0.029
#> Y-Value 0.179 0.144 0.212
#> Amplitude 0.189 0.154 0.226
#> Displacement 108.967 99.122 118.902
#> Model Fit 0.957
#>
#>
#> # Profile [ASPD]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.124 0.091 0.159
#> X-Value -0.099 -0.135 -0.065
#> Y-Value 0.203 0.166 0.237
#> Amplitude 0.226 0.190 0.265
#> Displacement 115.927 107.571 124.311
#> Model Fit 0.964
#>
#>
#> # Contrast [ASPD - NARPD]:
#>
#> Estimate Lower CI Upper CI
#> Δ Elevation -0.079 -0.114 -0.043
#> Δ X-Value -0.037 -0.074 0.002
#> Δ Y-Value 0.024 -0.014 0.061
#> Δ Amplitude 0.037 -0.002 0.075
#> Δ Displacement 6.960 -3.391 17.383
#> Δ Model Fit 0.007
Contrast | Elevation | X.Value | Y.Value | Amplitude | Displacement | Fit |
---|---|---|---|---|---|---|
NARPD | 0.20 (0.17, 0.23) | -0.06 (-0.10, -0.03) | 0.18 (0.14, 0.21) | 0.19 (0.15, 0.23) | 109.0 (99.1, 118.9) | 0.957 |
ASPD | 0.12 (0.09, 0.16) | -0.10 (-0.13, -0.06) | 0.20 (0.17, 0.24) | 0.23 (0.19, 0.26) | 115.9 (107.6, 124.3) | 0.964 |
ASPD - NARPD | -0.08 (-0.11, -0.04) | -0.04 (-0.07, 0.00) | 0.02 (-0.01, 0.06) | 0.04 (-0.00, 0.08) | 7.0 (-3.4, 17.4) | 0.007 |
Here, instead of a circle plot, we see a contrast plot showing the difference between the two measures’ SSM parameters and their 95% confidence intervals. Because the confidence interval for the elevation parameter does not include zero, this parameter is significantly different between the measures.
Finally, we might want to compare a single measure’s profiles in two
different groups. To do so, we need to specify the
measures
, the grouping
variable, and the type
of contrast
. In this case, we need to ensure that we are
providing only a single measure and a grouping variable with just two
levels (as again only two things can be contrasted at a time). Note that
the contrast name in this case will take the form of “Measure: Group2 -
Group1”.
results6 <- ssm_analyze(
data = jz2017,
scales = PANO(),
angles = octants(),
measures = "BORPD",
grouping = "Gender",
contrast = TRUE
)
summary(results6)
#>
#> Statistical Basis: Correlation Scores
#> Bootstrap Resamples: 2000
#> Confidence Level: 0.95
#> Listwise Deletion: TRUE
#> Scale Displacements: 90 135 180 225 270 315 360 45
#>
#>
#> # Profile [BORPD: Female]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.251 0.206 0.293
#> X-Value -0.068 -0.114 -0.021
#> Y-Value 0.126 0.064 0.184
#> Amplitude 0.143 0.084 0.203
#> Displacement 118.247 99.973 138.946
#> Model Fit 0.947
#>
#>
#> # Profile [BORPD: Male]:
#>
#> Estimate Lower CI Upper CI
#> Elevation 0.320 0.267 0.370
#> X-Value 0.012 -0.034 0.058
#> Y-Value 0.054 0.004 0.106
#> Amplitude 0.055 0.016 0.109
#> Displacement 77.367 12.983 133.991
#> Model Fit 0.500
#>
#>
#> # Contrast [BORPD: Male - Female]:
#>
#> Estimate Lower CI Upper CI
#> Δ Elevation 0.069 0.000 0.136
#> Δ X-Value 0.080 0.017 0.146
#> Δ Y-Value -0.072 -0.152 0.010
#> Δ Amplitude -0.088 -0.160 -0.003
#> Δ Displacement -40.880 -105.533 19.259
#> Δ Model Fit -0.447
Contrast | Elevation | X.Value | Y.Value | Amplitude | Displacement | Fit |
---|---|---|---|---|---|---|
BORPD: Female | 0.25 (0.21, 0.29) | -0.07 (-0.11, -0.02) | 0.13 (0.06, 0.18) | 0.14 (0.08, 0.20) | 118.2 (100.0, 138.9) | 0.947 |
BORPD: Male | 0.32 (0.27, 0.37) | 0.01 (-0.03, 0.06) | 0.05 (0.00, 0.11) | 0.06 (0.02, 0.11) | 77.4 (13.0, 134.0) | 0.500 |
BORPD: Male - Female | 0.07 (0.00, 0.14) | 0.08 (0.02, 0.15) | -0.07 (-0.15, 0.01) | -0.09 (-0.16, -0.00) | -40.9 (-105.5, 19.3) | -0.447 |
Although all SSM analyses are based on the idea of decomposing
circumplex scores into the parameters of a cosine curve, there are
actually many different ways to implement it. Each of these
implementations allows different questions to be explored. In the table
below, a list of the SSM analysis types that are currently implemented
in the circumplex
package is provided. This table also
provides the specific combination of arguments needed to implement each
analysis using the ssm_analyze()
function. Specifying which
analysis to run is simply a matter of providing the correct arguments to
the function; this allows a single function to essentially do the work
of seven and makes for a more intuitive user experience.
Usage | measures | grouping | contrast |
---|---|---|---|
Examine overall mean profile | FALSE | FALSE | FALSE |
Examine groups’ mean profiles | FALSE | TRUE | FALSE |
Compare groups’ mean profiles | FALSE | TRUE | TRUE |
Examine variables’ correlation profiles | TRUE | FALSE | FALSE |
Compare variables’ correlation profiles | TRUE | FALSE | TRUE |
Examine groups’ correlation profiles | TRUE | TRUE | FALSE |
Compare groups’ correlation profiles | TRUE | TRUE | TRUE |
The three main questions to ask when conducting a new SSM analysis are:
Do we want to project non-circumplex measures into the
circumplex space? If yes, we must specify one or more
measures
, and the scores that get modeled using SSM will be
the correlations between the circumplex scales and these measures. If
no, we must omit the measures
argument, and the scores that
get modeled using SSM will be the mean scores on the circumplex
scales.
Do we want to perform analyses separately for groups
within the dataset? If yes, we must specify a
grouping
variable, and the output will contain results for
each group (i.e., unique value of this variable). If no, we must omit
the grouping
argument, and a single set of results for all
data will be output.
Do we want to contrast/compare two sets of
results? If yes, we must specify contrast
as TRUE
and ensure that we are only requesting two sets of results (i.e., two
groups or two measures). If no, we must omit the contrast
argument or set it to FALSE, and the results themselves will be output,
rather than their contrast.
Additional arguments to the ssm_table()
function can be
explored using the ?ssm_table
command. Two useful options
are the drop_xy
argument, which shows or hides the x-value
and y-value columns, and the caption
argument which allows
a custom string to be printed above the table. Note as well that the
return object of this function is just a data frame, which can be easily
edited to add, change, or remove text. To change the formatting of the
table, see the htmlTable
or kableExtra
packages.
All SSM plots are created using the ggplot2
package,
which is incredibly flexible and powerful. It also offers the
ggsave()
function to export figures to external files of
various types. See the documentation for this function
(?ggsave
) to learn more, but some useful arguments are
filename
, plot
, width
,
height
, and units
. We can save the figure as a
raster image file (e.g., “png”, “jpeg”, “tiff”), a vector image file
(e.g., “svg”), or a portable document (e.g., “pdf” or “tex”). We can
also control the exact width and height of the image in different units
(i.e., “in”, “cm”, or “mm”). Because the underlying graphics are
vectorized in R, they can be easily scaled to any size without loss of
quality and used in manuscripts, presentations, or posters.
In this vignette, we learned how to generalize the SSM analyses to multiple groups and measures, how to conduct contrast analyses, how to make basic customizations to tables and figures, and how to export tables and figures to external files. In the next vignette, “Advanced Circumplex Visualization,” we will learn more advanced customization options for the SSM figures and other circumplex visualizations. (Note that the next vignette is still in progress.)
Gurtman, M. B. (1992). Construct validity of interpersonal personality measures: The interpersonal circumplex as a nomological net. Journal of Personality and Social Psychology, 63(1), 105–118.
Gurtman, M. B., & Pincus, A. L. (2003). The circumplex model: Methods and research applications. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology. Volume 2: Research methods in psychology (pp. 407–428). Hoboken, NJ: John Wiley & Sons, Inc.
Wright, A. G. C., Pincus, A. L., Conroy, D. E., & Hilsenroth, M. J. (2009). Integrating methods to optimize circumplex description and comparison of groups. Journal of Personality Assessment, 91(4), 311–322.
Zimmermann, J., & Wright, A. G. C. (2017). Beyond description in interpersonal construct validation: Methodological advances in the circumplex Structural Summary Approach. Assessment, 24(1), 3–23.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.