The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

detect_hypoglycemic_events function

detect_hypoglycemic_events

Runs the documented examples for detect_hypoglycemic_events().

example(detect_hypoglycemic_events, package = "cgmguru", run.dontrun = FALSE)
#> 
#> dtct__> # Load sample data
#> dtct__> library(iglu)
#> 
#> dtct__> data(example_data_5_subject)
#> 
#> dtct__> data(example_data_hall)
#> 
#> dtct__> # Level 1: \eqn{<} 70 \eqn{\geq} 15 min,
#> dtct__> # ends \eqn{\geq} 70 \eqn{\geq} 15 min
#> dtct__> hypo_lv1 <- detect_hypoglycemic_events(
#> dtct__+   example_data_5_subject, 
#> dtct__+   start_gl = 70, 
#> dtct__+   dur_length = 15, 
#> dtct__+   end_length = 15
#> dtct__+ )
#> 
#> dtct__> print(hypo_lv1$events_total)
#> # A tibble: 5 × 3
#>   id        total_events avg_ep_per_day
#>   <chr>            <int>          <dbl>
#> 1 Subject 1            1           0.08
#> 2 Subject 2            0           0   
#> 3 Subject 3            1           0.17
#> 4 Subject 4            2           0.16
#> 5 Subject 5            1           0.09
#> 
#> dtct__> # Level 2: \eqn{<} 54 \eqn{\geq} 15 min,
#> dtct__> # ends \eqn{\geq} 54 \eqn{\geq} 15 min
#> dtct__> hypo_lv2 <- detect_hypoglycemic_events(
#> dtct__+   example_data_5_subject, 
#> dtct__+   start_gl = 54, 
#> dtct__+   dur_length = 15, 
#> dtct__+   end_length = 15
#> dtct__+ )
#> 
#> dtct__> # Extended: \eqn{<} 70 \eqn{\geq} 120 min, 
#> dtct__> # ends \eqn{\geq} 70 \eqn{\geq} 15 min
#> dtct__> hypo_extended <- detect_hypoglycemic_events(example_data_5_subject)
#> 
#> dtct__> print(hypo_extended$events_total)
#> # A tibble: 5 × 3
#>   id        total_events avg_ep_per_day
#>   <chr>            <int>          <dbl>
#> 1 Subject 1            0              0
#> 2 Subject 2            0              0
#> 3 Subject 3            0              0
#> 4 Subject 4            0              0
#> 5 Subject 5            0              0
#> 
#> dtct__> # Compare event rates across levels
#> dtct__> cat("Level 1 events:", sum(hypo_lv1$events_total$total_events), "\n")
#> Level 1 events: 5 
#> 
#> dtct__> cat("Level 2 events:", sum(hypo_lv2$events_total$total_events), "\n")
#> Level 2 events: 0 
#> 
#> dtct__> cat("Extended events:", sum(hypo_extended$events_total$total_events), "\n")
#> Extended events: 0 
#> 
#> dtct__> # Analysis on larger dataset with Level 1 criteria
#> dtct__> large_hypo <- detect_hypoglycemic_events(example_data_hall, 
#> dtct__+                                          start_gl = 70, 
#> dtct__+                                          dur_length = 15, 
#> dtct__+                                          end_length = 15)
#> 
#> dtct__> print(large_hypo$events_total)
#> # A tibble: 19 × 3
#>    id           total_events avg_ep_per_day
#>    <chr>               <int>          <dbl>
#>  1 1636-69-001             2           0   
#>  2 1636-69-026             0           0   
#>  3 1636-69-032             0           0   
#>  4 1636-69-090             3           0.43
#>  5 1636-69-091             0           0   
#>  6 1636-69-114             0           0   
#>  7 1636-70-1005            2           0.25
#>  8 1636-70-1010            5           0.06
#>  9 2133-004                1           0.16
#> 10 2133-015                2           0.3 
#> 11 2133-017                0           0   
#> 12 2133-018                0           0   
#> 13 2133-019                4           0.44
#> 14 2133-021                1           0.16
#> 15 2133-024                8           1.22
#> 16 2133-027                2           0.25
#> 17 2133-035                1           0.14
#> 18 2133-036                8           0.93
#> 19 2133-039                6           0.66
#> 
#> dtct__> # Analysis on larger dataset with Level 2 criteria
#> dtct__> large_hypo_lv2 <- detect_hypoglycemic_events(example_data_hall,
#> dtct__+                                              start_gl = 54,
#> dtct__+                                              dur_length = 15,
#> dtct__+                                              end_length = 15)
#> 
#> dtct__> print(large_hypo_lv2$events_total)
#> # A tibble: 19 × 3
#>    id           total_events avg_ep_per_day
#>    <chr>               <int>          <dbl>
#>  1 1636-69-001             0           0   
#>  2 1636-69-026             0           0   
#>  3 1636-69-032             0           0   
#>  4 1636-69-090             0           0   
#>  5 1636-69-091             0           0   
#>  6 1636-69-114             0           0   
#>  7 1636-70-1005            1           0.12
#>  8 1636-70-1010            0           0   
#>  9 2133-004                0           0   
#> 10 2133-015                0           0   
#> 11 2133-017                0           0   
#> 12 2133-018                0           0   
#> 13 2133-019                0           0   
#> 14 2133-021                0           0   
#> 15 2133-024                1           0.15
#> 16 2133-027                0           0   
#> 17 2133-035                0           0   
#> 18 2133-036                0           0   
#> 19 2133-039                1           0.11
#> 
#> dtct__> # Analysis on larger dataset with Extended criteria
#> dtct__> large_hypo_extended <- detect_hypoglycemic_events(example_data_hall)
#> 
#> dtct__> print(large_hypo_extended$events_total)
#> # A tibble: 19 × 3
#>    id           total_events avg_ep_per_day
#>    <chr>               <int>          <dbl>
#>  1 1636-69-001             0           0   
#>  2 1636-69-026             0           0   
#>  3 1636-69-032             0           0   
#>  4 1636-69-090             0           0   
#>  5 1636-69-091             0           0   
#>  6 1636-69-114             0           0   
#>  7 1636-70-1005            0           0   
#>  8 1636-70-1010            1           0.01
#>  9 2133-004                0           0   
#> 10 2133-015                0           0   
#> 11 2133-017                0           0   
#> 12 2133-018                0           0   
#> 13 2133-019                0           0   
#> 14 2133-021                0           0   
#> 15 2133-024                0           0   
#> 16 2133-027                1           0.12
#> 17 2133-035                0           0   
#> 18 2133-036                1           0.12
#> 19 2133-039                0           0

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.