The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Runs the documented examples for
detect_hyperglycemic_events().
example(detect_hyperglycemic_events, package = "cgmguru", run.dontrun = FALSE)
#>
#> dtct__> # Load sample data
#> dtct__> library(iglu)
#>
#> dtct__> data(example_data_5_subject)
#>
#> dtct__> data(example_data_hall)
#>
#> dtct__> # Level 1: \eqn{\geq} 15 min \eqn{>} 180 mg/dL,
#> dtct__> # ends \eqn{\leq} 180 \eqn{\geq} 15 min
#> dtct__> hyper_lv1 <- detect_hyperglycemic_events(
#> dtct__+ example_data_5_subject,
#> dtct__+ start_gl = 180,
#> dtct__+ dur_length = 15,
#> dtct__+ end_length = 15,
#> dtct__+ end_gl = 180
#> dtct__+ )
#>
#> dtct__> print(hyper_lv1$events_total)
#> # A tibble: 5 × 3
#> id total_events avg_ep_per_day
#> <chr> <int> <dbl>
#> 1 Subject 1 14 1.1
#> 2 Subject 2 17 1.02
#> 3 Subject 3 8 1.39
#> 4 Subject 4 13 1.01
#> 5 Subject 5 34 3.21
#>
#> dtct__> # Level 2: \eqn{\geq} 15 min \eqn{>} 250 mg/dL,
#> dtct__> # ends \eqn{\leq} 250 \eqn{\geq} 15 min
#> dtct__> hyper_lv2 <- detect_hyperglycemic_events(
#> dtct__+ example_data_5_subject,
#> dtct__+ start_gl = 250,
#> dtct__+ dur_length = 15,
#> dtct__+ end_length = 15,
#> dtct__+ end_gl = 250
#> dtct__+ )
#>
#> dtct__> print(hyper_lv2$events_total)
#> # A tibble: 5 × 3
#> id total_events avg_ep_per_day
#> <chr> <int> <dbl>
#> 1 Subject 1 2 0.16
#> 2 Subject 2 18 1.08
#> 3 Subject 3 4 0.69
#> 4 Subject 4 0 0
#> 5 Subject 5 17 1.6
#>
#> dtct__> # Extended Hyperglycemia (\eqn{>} 250 mg/dL \eqn{\geq} 90 cumulative min within 120-min period,
#> dtct__> # ends \eqn{\leq} 180 mg/dL \eqn{\geq} 15 min after)
#> dtct__> hyper_extended <- detect_hyperglycemic_events(example_data_5_subject)
#>
#> dtct__> print(hyper_extended$events_total)
#> # A tibble: 5 × 3
#> id total_events avg_ep_per_day
#> <chr> <int> <dbl>
#> 1 Subject 1 0 0
#> 2 Subject 2 9 0.54
#> 3 Subject 3 2 0.35
#> 4 Subject 4 0 0
#> 5 Subject 5 10 0.94
#>
#> dtct__> # Compare event rates across levels
#> dtct__> cat("Level 1 events:", sum(hyper_lv1$events_total$total_events), "\n")
#> Level 1 events: 86
#>
#> dtct__> cat("Level 2 events:", sum(hyper_lv2$events_total$total_events), "\n")
#> Level 2 events: 41
#>
#> dtct__> cat("Extended events:", sum(hyper_extended$events_total$total_events), "\n")
#> Extended events: 21
#>
#> dtct__> # Analysis on larger dataset with Level 1 criteria
#> dtct__> large_hyper <- detect_hyperglycemic_events(example_data_hall,
#> dtct__+ start_gl = 180,
#> dtct__+ dur_length = 15,
#> dtct__+ end_length = 15,
#> dtct__+ end_gl = 180)
#>
#> dtct__> print(large_hyper$events_total)
#> # A tibble: 19 × 3
#> id total_events avg_ep_per_day
#> <chr> <int> <dbl>
#> 1 1636-69-001 4 0.01
#> 2 1636-69-026 1 0.14
#> 3 1636-69-032 1 0.16
#> 4 1636-69-090 3 0.43
#> 5 1636-69-091 0 0
#> 6 1636-69-114 0 0
#> 7 1636-70-1005 3 0.37
#> 8 1636-70-1010 1 0.01
#> 9 2133-004 5 0.81
#> 10 2133-015 3 0.45
#> 11 2133-017 0 0
#> 12 2133-018 12 1.94
#> 13 2133-019 0 0
#> 14 2133-021 9 1.42
#> 15 2133-024 0 0
#> 16 2133-027 0 0
#> 17 2133-035 1 0.14
#> 18 2133-036 2 0.23
#> 19 2133-039 2 0.22
#>
#> dtct__> # Analysis on larger dataset with Level 2 criteria
#> dtct__> large_hyper_lv2 <- detect_hyperglycemic_events(example_data_hall,
#> dtct__+ start_gl = 250,
#> dtct__+ dur_length = 15,
#> dtct__+ end_length = 15,
#> dtct__+ end_gl = 250)
#>
#> dtct__> print(large_hyper_lv2$events_total)
#> # A tibble: 19 × 3
#> id total_events avg_ep_per_day
#> <chr> <int> <dbl>
#> 1 1636-69-001 0 0
#> 2 1636-69-026 0 0
#> 3 1636-69-032 0 0
#> 4 1636-69-090 0 0
#> 5 1636-69-091 0 0
#> 6 1636-69-114 0 0
#> 7 1636-70-1005 0 0
#> 8 1636-70-1010 0 0
#> 9 2133-004 0 0
#> 10 2133-015 0 0
#> 11 2133-017 0 0
#> 12 2133-018 2 0.32
#> 13 2133-019 0 0
#> 14 2133-021 0 0
#> 15 2133-024 0 0
#> 16 2133-027 0 0
#> 17 2133-035 0 0
#> 18 2133-036 0 0
#> 19 2133-039 0 0
#>
#> dtct__> # Analysis on larger dataset with Extended criteria
#> dtct__> large_hyper_extended <- detect_hyperglycemic_events(example_data_hall)
#>
#> dtct__> print(large_hyper_extended$events_total)
#> # A tibble: 19 × 3
#> id total_events avg_ep_per_day
#> <chr> <int> <dbl>
#> 1 1636-69-001 0 0
#> 2 1636-69-026 0 0
#> 3 1636-69-032 0 0
#> 4 1636-69-090 0 0
#> 5 1636-69-091 0 0
#> 6 1636-69-114 0 0
#> 7 1636-70-1005 0 0
#> 8 1636-70-1010 0 0
#> 9 2133-004 0 0
#> 10 2133-015 0 0
#> 11 2133-017 0 0
#> 12 2133-018 1 0.16
#> 13 2133-019 0 0
#> 14 2133-021 0 0
#> 15 2133-024 0 0
#> 16 2133-027 0 0
#> 17 2133-035 0 0
#> 18 2133-036 0 0
#> 19 2133-039 0 0
#>
#> dtct__> # View detailed events for specific subject
#> dtct__> if(nrow(hyper_lv1$events_detailed) > 0) {
#> dtct__+ first_subject <- hyper_lv1$events_detailed$id[1]
#> dtct__+ subject_events <- hyper_lv1$events_detailed[hyper_lv1$events_detailed$id == first_subject, ]
#> dtct__+ head(subject_events)
#> dtct__+ }
#> # A tibble: 6 × 7
#> id start_time start_glucose end_time end_glucose
#> <chr> <dttm> <dbl> <dttm> <dbl>
#> 1 Subject 1 2015-06-11 15:45:07 194 2015-06-11 17:10:07 157
#> 2 Subject 1 2015-06-11 17:25:07 195 2015-06-11 20:05:06 142
#> 3 Subject 1 2015-06-11 22:35:06 187 2015-06-12 00:05:06 151
#> 4 Subject 1 2015-06-12 07:50:04 181 2015-06-12 09:35:04 164
#> 5 Subject 1 2015-06-13 17:04:59 181 2015-06-13 18:40:00 155
#> 6 Subject 1 2015-06-13 19:44:59 223 2015-06-13 20:49:58 158
#> # ℹ 2 more variables: start_indices <int>, end_indices <int>These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.