The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Code from examples in manuscript

library(causaloptim)
#> Loading required package: igraph
#> 
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#> 
#>     decompose, spectrum
#> The following object is masked from 'package:base':
#> 
#>     union

confounded exposure and outcome

b <- graph_from_literal(X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(0,0,0)
V(b)$latent <- c(0,0,1)
V(b)$nvals <- c(3,2,2)
E(b)$rlconnect <- E(b)$edge.monotone <- c(0, 0, 0)

obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
optimize_effect_2(obj)
#> lower bound =  
#> MAX {
#>   -1 + p00_ + p11_
#> }
#> ----------------------------------------
#> upper bound =  
#> MIN {
#>   1 - p10_ - p01_
#> }


obj2 <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 2) = 1} - p{Y(X = 0) = 1}")
optimize_effect_2(obj2)
#> lower bound =  
#> MAX {
#>   -p10_ - p20_ - p01_ - p11_
#> }
#> ----------------------------------------
#> upper bound =  
#> MIN {
#>   1 - p20_ - p01_
#> }


obj3 <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 2) = 1} - p{Y(X = 1) = 1}")
optimize_effect_2(obj3)
#> lower bound =  
#> MAX {
#>   -p00_ - p20_ - p01_ - p11_
#> }
#> ----------------------------------------
#> upper bound =  
#> MIN {
#>   1 - p20_ - p11_
#> }

multiple instruments

Not run, this takes a few minutes to compute.

b <- graph_from_literal(Z1 -+ X, Z2 -+ X, Z2 -+ Z1, Ul -+ Z1, Ul -+ Z2,
                        X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(1, 0, 1, 1, 0, 0)
V(b)$latent <- c(0, 0, 0, 1, 0, 1)
V(b)$nvals <- c(2, 2, 2, 2, 2, 2)
E(b)$rlconnect <- c(0, 0, 0, 0, 0, 0, 0, 0)
E(b)$edge.monotone <- c(0, 0, 0, 0, 0, 0, 0, 0)

obj <- analyze_graph(b, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")

bounds.multi <- optimize_effect_2(obj)

b2 <- graph_from_literal(Z1 -+ X, Ul -+ Z1,
                         X -+ Y, Ur -+ X, Ur -+ Y)
V(b2)$leftside <- c(1, 0, 1, 0, 0)
V(b2)$latent <- c(0, 0, 1, 0, 1)
V(b2)$nvals <- c(2, 2, 2, 2, 2)
E(b2)$rlconnect <- c(0, 0,  0, 0, 0)
E(b2)$edge.monotone <- c(0, 0, 0, 0, 0)


## single instrument
obj2 <- analyze_graph(b2, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
bounds.sing <- optimize_effect_2(obj2)


b3 <- graph_from_literal(Z3 -+ X, Ul -+ Z3,
                         X -+ Y, Ur -+ X, Ur -+ Y)
V(b3)$leftside <- c(1, 0, 1, 0, 0)
V(b3)$latent <- c(0, 0, 1, 0, 1)
V(b3)$nvals <- c(4, 2, 2, 2, 2)
E(b3)$rlconnect <- c(0, 0,  0, 0, 0)
E(b3)$edge.monotone <- c(0, 0, 0, 0, 0)


## single instrument
obj3 <- analyze_graph(b3, constraints = NULL, effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
bounds.quad <- optimize_effect_2(obj3)


joint <- function(df, alpha, pUr, pUl) {

  Z1 <- df$Z1
  Z2 <- df$Z2
  X <- df$X
  Y <- df$Y

  pUr * pUl * (((pnorm(alpha[1] + alpha[2] * 1)) ^ Z1 * (1 - pnorm(alpha[1] + alpha[2] * 1)) ^ (1 - Z1)) *
                 ((pnorm(alpha[3] + alpha[4] * 1 + alpha[5] * Z1)) ^ Z2 *
                    (1 - pnorm(alpha[3] + alpha[4] * 1 + alpha[5] * Z1)) ^ (1 - Z2)) *
                 ((pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 1)) ^ X *
                    (1 - pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 1)) ^ (1 - X)) *
                 (pnorm(alpha[10] + alpha[11] * X + alpha[12] * 1)) ^ Y *
                 (1 - pnorm(alpha[10] + alpha[11] * X + alpha[12] * 1)) ^ (1 - Y)) +
    pUr * (1 - pUl) * (((pnorm(alpha[1] + alpha[2] * 0)) ^ Z1 * (1 - pnorm(alpha[1] + alpha[2] * 0)) ^ (1 - Z1)) *
                         ((pnorm(alpha[3] + alpha[4] * 0 + alpha[5] * Z1)) ^ Z2 *
                            (1 - pnorm(alpha[3] + alpha[4] * 0 + alpha[5] * Z1)) ^ (1 - Z2)) *
                         ((pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 1)) ^ X *
                            (1 - pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 1)) ^ (1 - X)) *
                         (pnorm(alpha[10] + alpha[11] * X + alpha[12] * 1)) ^ Y *
                         (1 - pnorm(alpha[10] + alpha[11] * X + alpha[12] * 1)) ^ (1 - Y)) +
    (1 - pUr) * pUl * (((pnorm(alpha[1] + alpha[2] * 1)) ^ Z1 * (1 - pnorm(alpha[1] + alpha[2] * 1)) ^ (1 - Z1)) *
                         ((pnorm(alpha[3] + alpha[4] * 1 + alpha[5] * Z1)) ^ Z2 *
                            (1 - pnorm(alpha[3] + alpha[4] * 1 + alpha[5] * Z1)) ^ (1 - Z2)) *
                         ((pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 0)) ^ X *
                            (1 - pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 0)) ^ (1 - X)) *
                         (pnorm(alpha[10] + alpha[11] * X + alpha[12] * 0)) ^ Y *
                         (1 - pnorm(alpha[10] + alpha[11] * X + alpha[12] * 0)) ^ (1 - Y)) +
    (1 - pUr) * (1 - pUl) * (((pnorm(alpha[1] + alpha[2] * 0)) ^ Z1 * (1 - pnorm(alpha[1] + alpha[2] * 0)) ^ (1 - Z1)) *
                               ((pnorm(alpha[3] + alpha[4] * 0 + alpha[5] * Z1)) ^ Z2 *
                                  (1 - pnorm(alpha[3] + alpha[4] * 0 + alpha[5] * Z1)) ^ (1 - Z2)) *
                               ((pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 0)) ^ X *
                                  (1 - pnorm(alpha[6] + alpha[7] * Z1 + alpha[8] * Z2 + alpha[9] * 0)) ^ (1 - X)) *
                               (pnorm(alpha[10] + alpha[11] * X + alpha[12] * 0)) ^ Y *
                               (1 - pnorm(alpha[10] + alpha[11] * X + alpha[12] * 0)) ^ (1 - Y))


}


## get conditional probabilities
## key = XY_Z1Z2

get_cond_probs <- function(p.vals) {

  z1z2.joint <- unique(p.vals[, c("Z1", "Z2")])
  for(j in 1:nrow(z1z2.joint)) {
    z1z2.joint$Prob.condz1z2[j] <- sum(subset(p.vals, Z1 == z1z2.joint[j, "Z1"] & Z2 == z1z2.joint[j, "Z2"])$Prob)

  }

  p.vals.2 <- merge(p.vals, z1z2.joint, by = c("Z1", "Z2"), sort = FALSE)

  p.vals.2$Prob.cond.fin <- ifelse(p.vals.2$Prob ==0, 0.0, p.vals.2$Prob / p.vals.2$Prob.condz1z2)
  res <- as.list(p.vals.2$Prob.cond.fin)
  names(res) <- with(p.vals.2, paste0("p", X, Y, "_", Z1, Z2))

  ## conditional on Z1 only

  xyz1.joint <- unique(p.vals[, c("Z1", "X", "Y")])
  for(j in 1:nrow(xyz1.joint)) {

    xyz1.joint$Prob.xyz1[j] <- sum(subset(p.vals, Z1 == xyz1.joint$Z1[j] &
                                            X == xyz1.joint$X[j] & Y == xyz1.joint$Y[j])$Prob)

  }

  z1.marg0 <- sum(subset(xyz1.joint, Z1 == 0)$Prob.xyz1)
  z1.marg1 <-   sum(subset(xyz1.joint, Z1 == 1)$Prob.xyz1)

  xyz1.joint$Prob.z1[xyz1.joint$Z1 == 0] <- z1.marg0
  xyz1.joint$Prob.z1[xyz1.joint$Z1 == 1] <- z1.marg1

  xyz1.joint$Prob.cond <- with(xyz1.joint, Prob.xyz1 / Prob.z1)
  res2 <- as.list(xyz1.joint$Prob.cond)
  names(res2) <- with(xyz1.joint, paste0("p", X, Y, "_", Z1))
  
  
  ## conditioning on Z3
  
  z3.joint <- unique(p.vals[, c("Z3"), drop = FALSE])
  for(j in 1:nrow(z3.joint)) {
    z3.joint$Prob.condz3[j] <- sum(subset(p.vals, Z3 == z3.joint[j, "Z3"])$Prob)
  }

  p.vals.3 <- merge(p.vals, z3.joint, by = c("Z3"), sort = FALSE)

  p.vals.3$Prob.cond.fin <- ifelse(p.vals.3$Prob ==0, 0.0, p.vals.3$Prob / p.vals.3$Prob.condz3)
  res3 <- as.list(p.vals.3$Prob.cond.fin)
  names(res3) <- with(p.vals.3, paste0("p", X, Y, "_", Z3))


  list(multi = res, 
       sing = res2,
       quad = res3)

}



## simulate and compare the two
nsim <- 50000
f.multi <- interpret_bounds(bounds.multi$bounds, obj$parameters)
f.single <- interpret_bounds(bounds.sing$bounds, obj2$parameters)
f.quad <- interpret_bounds(bounds.quad$bounds, obj3$parameters)

result <- matrix(NA, ncol = 9, nrow = nsim)

set.seed(211129)
for (i in 1:nsim) {

  alpha <- rnorm(12, sd = 2)
  pUr <- runif(1)
  pUl <- runif(1)

  p.vals.joint <- obj$p.vals
  p.vals.joint$Prob <- joint(p.vals.joint, alpha, pUr, pUl)
  
  p.vals.joint$Z3 <- with(p.vals.joint, ifelse(Z1 == 0 & Z2 == 0, 0, 
                                               ifelse(Z1 == 0 & Z2 == 1, 1, 
                                                      ifelse(Z1 == 1 & Z2 == 0, 2, 
                                                             3))))
  
  if(any(p.vals.joint$Prob == 0)) next

  condprobs <- get_cond_probs(p.vals.joint)

  bees <- do.call(f.multi, condprobs$multi)
  bees.sing <- do.call(f.single, condprobs$sing)
  bees.quad <- do.call(f.quad, condprobs$quad)
  
  result[i, ] <- unlist(c(sort(unlist(bees)), abs(bees[2] - bees[1]), 
                          sort(unlist(bees.sing)), abs(bees.sing[2]- bees.sing[1]),
                          sort(unlist(bees.quad)), abs(bees.quad[2]- bees.quad[1])))

}
colnames(result) <- c("bound.lower",
                      "bound.upper", "width.multi",
                      "bound.lower.single", "bound.upper.single", "width.single", 
                      "bound.lower.quad", "bound.upper.quad", "width.quad")
bounds.comparison <- as.data.frame(result)

#pdf("figsim.pdf", width = 8, height = 4.25, family = "serif")
par(mfrow = c(1,2))
plot(width.multi ~ width.single, data = bounds.comparison, pch = 20, cex = .3,
     xlim = c(0, 1), ylim = c(0, 1), xlab= "Single IV", ylab = "Two binary IV/Single 4-level IV",
     main = "Width of bounds intervals")
abline(0, 1, lty = 3)

plot(bound.lower.quad ~ bound.lower, data = bounds.comparison[1:100,], pch = 20, cex = 1, 
     xlim = c(-1, 1), ylim = c(-1, 1), xlab = "Two binary IV", ylab = "Single 4-level IV", 
     main = "Bounds values")
points(bound.upper.quad ~ bound.upper, data = bounds.comparison[1:100,], pch = 1, cex = 1)

legend("bottomright", pch = c(1, 20), legend = c("upper", "lower"))
#dev.off()

summary(bounds.comparison) # contains 467 NA's to avoid division by 0
# Verify that a single quad-level instrument yield the same bounds as two linked binary ones.
all(round(x = bounds.comparison$bound.lower, digits = 12) == 
        round(x = bounds.comparison$bound.lower.quad, digits = 12) && 
        round(x = bounds.comparison$bound.upper, digits = 12) == 
        round(x = bounds.comparison$bound.upper.quad, digits = 12), 
    na.rm = TRUE)

measurement error in the outcome

b <- graph_from_literal(Ul -+ X -+ Y -+ Y2, Ur -+ Y, Ur -+ Y2)
V(b)$leftside <- c(1, 1, 0, 0, 0)
V(b)$latent <- c(1, 0, 1, 0, 1)
V(b)$nvals <- c(2, 2, 2, 2, 2)
E(b)$rlconnect <- c(0, 0, 0, 0, 0)
E(b)$edge.monotone <- c(0, 0, 0, 0, 0)

obj <- analyze_graph(b, constraints = "Y2(Y = 1) >= Y2(Y = 0)",
                     effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")

optimize_effect_2(obj)
#> lower bound =  
#> MAX {
#>   -1,
#>   -1 + 2p0_0 - 2p0_1
#> }
#> ----------------------------------------
#> upper bound =  
#> MIN {
#>   1,
#>   1 + 2p0_0 - 2p0_1
#> }

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.