The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

second.diff.fitted

Computes the second difference in fitted values from an estimated regression model. Inference in supported via the delta method or bootstrapping.

For example:

library(catregs)
data("Mize19AH")
m1 <- glm(alcB ~woman*parrole + age + race2 + race3 + race4 + income + ed1 + ed2 + ed3 + ed4,family="binomial",data=Mize19AH)
des2<-margins.des(m1,expand.grid(woman=c(0,1),parrole=c(0,1)))
des2
##   woman parrole      age     race2       race3      race4   income       ed1
## 1     0       0 28.41653 0.2189459 0.005804504 0.02995124 34.50605 0.1811005
## 2     1       0 28.41653 0.2189459 0.005804504 0.02995124 34.50605 0.1811005
## 3     0       1 28.41653 0.2189459 0.005804504 0.02995124 34.50605 0.1811005
## 4     1       1 28.41653 0.2189459 0.005804504 0.02995124 34.50605 0.1811005
##         ed2       ed3        ed4
## 1 0.4100302 0.2542373 0.09774785
## 2 0.4100302 0.2542373 0.09774785
## 3 0.4100302 0.2542373 0.09774785
## 4 0.4100302 0.2542373 0.09774785
second.diff.fitted(m1,des2,compare=c(4,2,3,1),rounded=5) # [Pr(Drink | Mothers) - Pr(Drink | Childless Women)] - [Pr(Drink | Fathers) - Pr(Drink | Childless Men)]
##   Second Difference Standard Error Statistic p-value       ll       ul
## 1           -0.0622        0.03166  -1.96428  0.0495 -0.12425 -0.00014
# Note that this is reported as the "Second Difference" in Table 3 of Mize (2019: 104, "Best Practices for Estimating, Interpreting, and Presenting Nonlinear Interaction Effect. Sociological Science. 6(4): 81-117.")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.