The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
caretEnsemble 4.0.0 introduces many new features! Let’s quickly go over them.
caretEnsemble now fully supports multiclass problems:
model_list <- caretEnsemble::caretList(
x = iris[, 1L:4L],
y = iris[, 5L],
methodList = c("rpart", "rf")
)
print(summary(model_list))
#> The following models were ensembled: rpart, rf
#>
#> Model accuracy:
#> model_name metric value sd
#> <char> <char> <num> <num>
#> 1: rpart Accuracy 0.9333333 0.04082483
#> 2: rf Accuracy 0.9600000 0.02788867
The new version uses a greedy optimizer by default, ensuring the ensemble is never worse than the worst single model:
ens <- caretEnsemble::caretEnsemble(model_list)
print(summary(ens))
#> The following models were ensembled: rpart, rf
#>
#> Model Importance:
#> rpart_setosa rpart_versicolor rpart_virginica rf_setosa
#> 0.2937 0.0101 0.0122 0.0000
#> rf_versicolor rf_virginica
#> 0.3303 0.3537
#>
#> Model accuracy:
#> model_name metric value sd
#> <char> <char> <num> <num>
#> 1: ensemble Accuracy 0.9600000 0.01490712
#> 2: rpart Accuracy 0.9333333 0.04082483
#> 3: rf Accuracy 0.9600000 0.02788867
caretStack (and by extension, caretEnsemble) now supports various S3 methods:
print(ens)
#> The following models were ensembled: rpart, rf
#>
#> caret::train model:
#> Greedy Mean Squared Error Optimizer
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 120, 120, 120, 120, 120
#> Resampling results:
#>
#> Accuracy Kappa
#> 0.96 0.94
#>
#> Tuning parameter 'max_iter' was held constant at a value of 100
#>
#> Final model:
#> Greedy MSE
#> RMSE: 0.1476488
#> Weights:
#> setosa versicolor virginica
#> rpart_setosa 1 0.00 0.00
#> rpart_versicolor 0 0.00 0.03
#> rpart_virginica 0 0.03 0.00
#> rf_setosa 0 0.00 0.00
#> rf_versicolor 0 0.97 0.00
#> rf_virginica 0 0.00 0.97
print(summary(ens))
#> The following models were ensembled: rpart, rf
#>
#> Model Importance:
#> rpart_setosa rpart_versicolor rpart_virginica rf_setosa
#> 0.2579 0.0113 0.0113 0.0000
#> rf_versicolor rf_virginica
#> 0.3490 0.3705
#>
#> Model accuracy:
#> model_name metric value sd
#> <char> <char> <num> <num>
#> 1: ensemble Accuracy 0.9600000 0.01490712
#> 2: rpart Accuracy 0.9333333 0.04082483
#> 3: rf Accuracy 0.9600000 0.02788867
A new default trainControl constructor makes it easier to build appropriate controls for caretLists. These controls include explicit indexes based on the target, return stacked predictions, and use probability estimates for classification models.
class_control <- caretEnsemble::defaultControl(iris$Species)
print(ls(class_control))
#> [1] "adaptive" "allowParallel" "classProbs"
#> [4] "fixedWindow" "horizon" "index"
#> [7] "indexFinal" "indexOut" "initialWindow"
#> [10] "method" "number" "p"
#> [13] "preProcOptions" "predictionBounds" "repeats"
#> [16] "returnData" "returnResamp" "sampling"
#> [19] "savePredictions" "search" "seeds"
#> [22] "selectionFunction" "skip" "summaryFunction"
#> [25] "timingSamps" "trim" "verboseIter"
reg_control <- caretEnsemble::defaultControl(iris$Sepal.Length)
print(ls(reg_control))
#> [1] "adaptive" "allowParallel" "classProbs"
#> [4] "fixedWindow" "horizon" "index"
#> [7] "indexFinal" "indexOut" "initialWindow"
#> [10] "method" "number" "p"
#> [13] "preProcOptions" "predictionBounds" "repeats"
#> [16] "returnData" "returnResamp" "sampling"
#> [19] "savePredictions" "search" "seeds"
#> [22] "selectionFunction" "skip" "summaryFunction"
#> [25] "timingSamps" "trim" "verboseIter"
Models with different resampling strategies can now be ensembled:
y <- iris[, 1L]
x <- iris[, 2L:3L]
flex_list <- caretEnsemble::caretList(
x = x,
y = y,
methodList = c("rpart", "rf"),
trControl = caretEnsemble::defaultControl(y, number = 3L)
)
#> note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .
flex_list$glm_boot <- caret::train(
x = x,
y = y,
method = "glm",
trControl = caretEnsemble::defaultControl(y, method = "boot", number = 25L)
)
flex_ens <- caretEnsemble::caretEnsemble(flex_list)
print(flex_ens)
#> The following models were ensembled: rpart, rf, glm_boot
#>
#> caret::train model:
#> Greedy Mean Squared Error Optimizer
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 120, 121, 120, 119, 120
#> Resampling results:
#>
#> RMSE Rsquared MAE
#> 0.3213821 0.8504616 0.2652383
#>
#> Tuning parameter 'max_iter' was held constant at a value of 100
#>
#> Final model:
#> Greedy MSE
#> RMSE: 0.3204963
#> Weights:
#> [,1]
#> rpart 0.00
#> rf 0.51
#> glm_boot 0.49
caretEnsemble now allows ensembling of mixed lists of classification and regression models:
X <- iris[, 1L:4L]
target_class <- iris[, 5L]
target_reg <- as.integer(iris[, 5L] == "virginica")
ctrl_class <- caretEnsemble::defaultControl(target_class)
ctrl_reg <- caretEnsemble::defaultControl(target_reg)
model_class <- caret::train(iris[, 1L:4L], target_class, method = "rf", trControl = ctrl_class)
model_reg <- caret::train(iris[, 1L:4L], target_reg, method = "rf", trControl = ctrl_reg)
mixed_list <- caretEnsemble::as.caretList(list(class = model_class, reg = model_reg))
mixed_ens <- caretEnsemble::caretEnsemble(mixed_list)
print(mixed_ens)
#> The following models were ensembled: class, reg
#>
#> caret::train model:
#> Greedy Mean Squared Error Optimizer
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 120, 120, 120, 120, 120
#> Resampling results:
#>
#> Accuracy Kappa
#> 0.9466667 0.92
#>
#> Tuning parameter 'max_iter' was held constant at a value of 100
#>
#> Final model:
#> Greedy MSE
#> RMSE: 0.1520195
#> Weights:
#> setosa versicolor virginica
#> class_setosa 1 0.01 0.00
#> class_versicolor 0 0.97 0.01
#> class_virginica 0 0.02 0.00
#> reg 0 0.00 0.99
caretStack now supports transfer learning for ensembling models trained on different datasets:
train_idx <- sample.int(nrow(iris), 100L)
train_data <- iris[train_idx, ]
new_data <- iris[-train_idx, ]
model_list <- caretEnsemble::caretList(
x = train_data[, 1L:4L],
y = train_data[, 5L],
methodList = c("rpart", "rf")
)
transfer_ens <- caretEnsemble::caretEnsemble(
model_list,
new_X = new_data[, 1L:4L],
new_y = new_data[, 5L]
)
print(transfer_ens)
#> The following models were ensembled: rpart, rf
#>
#> caret::train model:
#> Greedy Mean Squared Error Optimizer
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 39, 41, 40, 40, 40
#> Resampling results:
#>
#> Accuracy Kappa
#> 0.96 0.9398462
#>
#> Tuning parameter 'max_iter' was held constant at a value of 100
#>
#> Final model:
#> Greedy MSE
#> RMSE: 0.1090264
#> Weights:
#> setosa versicolor virginica
#> rpart_setosa 1 0.00 0
#> rpart_versicolor 0 0.00 0
#> rpart_virginica 0 0.00 0
#> rf_setosa 0 0.01 0
#> rf_versicolor 0 0.99 0
#> rf_virginica 0 0.00 1
We can also predict on new data:
setosa | versicolor | virginica |
---|---|---|
0.9900990 | 0.0099010 | 0 |
0.9900990 | 0.0099010 | 0 |
0.9900990 | 0.0099010 | 0 |
0.9881814 | 0.0118186 | 0 |
0.9900990 | 0.0099010 | 0 |
0.9900990 | 0.0099010 | 0 |
Permutation importance is now the default method for variable importance in caretLists and caretStacks:
importance <- caret::varImp(transfer_ens)
print(round(importance, 2L))
#> rpart_setosa rpart_versicolor rpart_virginica rf_setosa
#> 0.36 0.00 0.00 0.00
#> rf_versicolor rf_virginica
#> 0.32 0.31
Note that the ensemble uses rpart to classify the easy class (setosa) and then uses the rf to distinguish between the 2 more difficult classes.
This completes our demonstration of the key new features in caretEnsemble 4.0. These enhancements provide greater flexibility, improved performance, and easier usage for ensemble modeling in R.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.