The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
z <- cos(x)^2 + sin(x)^2
z
#> c: 2 2
#> sin (x) + cos (x)
simplify(z)
#> c: 1
tex(z)
#> [1] "\\sin^{2}{\\left(x \\right)} + \\cos^{2}{\\left(x \\right)}"
z <- cos(x)*cos(y) - sin(x)*sin(y)
z
#> c: -sin(x)⋅sin(y) + cos(x)⋅cos(y)
simplify(z)
#> c: cos(x + y)
z <- cos(x + y)
z
#> c: cos(x + y)
expand(z)
#> c: cos(x + y)
expand_trig(z)
#> c: -sin(x)⋅sin(y) + cos(x)⋅cos(y)
x <- symbol('x')
y <- symbol('y')
z <- log(x*y)
z
#> c: log(x⋅y)
expand_log(z)
#> c: log(x) + log(y)
x <- symbol("x")
int(1/x, x, 1, 10)
#> c: log(10)
i1 <- int(1/x, x, 1, 10, doit = FALSE)
i1
#> c: 10
#> ⌠
#> ⎮ 1
#> ⎮ ─ dx
#> ⎮ x
#> ⌡
#> 1
tex(i1)
#> [1] "\\int\\limits_{1}^{10} \\frac{1}{x}\\, dx"
doit(i1)
#> c: log(10)
int(1/x, x)
#> c: log(x)
i1 <- int(1/x, x, doit = FALSE)
i1
#> c: ⌠
#> ⎮ 1
#> ⎮ ─ dx
#> ⎮ x
#> ⌡
tex(i1)
#> [1] "\\int \\frac{1}{x}\\, dx"
doit(i1)
#> c: log(x)
x <- symbol("x")
lim(sin(x)/x, "x", 0)
#> c: 1
lim(1/x, "x", 0, dir = '+')
#> c: ∞
lim(1/x, "x", 0, dir = '-')
#> c: -∞
We can also postpone evaluation:
Note that the function is called d()
and not
deriv()
.
x <- symbol("x")
y <- symbol("y")
f <- 3*x^2 + x*y^2
f
#> c: 2 2
#> 3⋅x + x⋅y
as_expr(f)
#> expression(3 * x^2 + x * y^2)
der(f, "x")
#> c: 2
#> 6⋅x + y
der(f, x)
#> c: 2
#> 6⋅x + y
der(f, c("x", "y"))
#> c: ⎡ 2 ⎤
#> ⎣6⋅x + y 2⋅x⋅y⎦
der(f, list(x, y))
#> c: ⎡ 2 ⎤
#> ⎣6⋅x + y 2⋅x⋅y⎦
f1 <- der(f, list(x, y))
f1
#> c: ⎡ 2 ⎤
#> ⎣6⋅x + y 2⋅x⋅y⎦
as.character(f1)
#> [1] "[6*x + y^2, 2*x*y]"
as_expr(f1)
#> expression(cbind(6 * x + y^2, 2 * x * y))
eval(as_expr(f1), list(x = 1, y = 2))
#> [,1] [,2]
#> [1,] 10 4
der(f1, list(x, y))
#> c: ⎡ 6 2⋅y⎤
#> ⎢ ⎥
#> ⎣2⋅y 2⋅x⎦
f2 <- der2(f, list(x, y))
f2
#> c: ⎡ 6 2⋅y⎤
#> ⎢ ⎥
#> ⎣2⋅y 2⋅x⎦
as_expr(f2)
#> expression(matrix(c(6, 2 * y, 2 * y, 2 * x), nrow = 2))
eval(as_expr(f2), list(x = 1, y = 2))
#> [,1] [,2]
#> [1,] 6 4
#> [2,] 4 2
A <- matrix(c("x", 0, 0, "2*x"), 2, 2)
A
#> [,1] [,2]
#> [1,] "x" "0"
#> [2,] "0" "2*x"
B <- as_sym(A)
B
#> c: ⎡x 0 ⎤
#> ⎢ ⎥
#> ⎣0 2⋅x⎦
2*B
#> c: ⎡2⋅x 0 ⎤
#> ⎢ ⎥
#> ⎣ 0 4⋅x⎦
B*B # Component-wise / Hadamard product
#> c: ⎡ 2 ⎤
#> ⎢x 0 ⎥
#> ⎢ ⎥
#> ⎢ 2⎥
#> ⎣0 4⋅x ⎦
dim(B)
#> [1] 2 2
sqrt(B)
#> c: ⎡√x 0 ⎤
#> ⎢ ⎥
#> ⎣0 √2⋅√x⎦
log(B)
#> c: ⎡log(x) zoo ⎤
#> ⎢ ⎥
#> ⎣ zoo log(2⋅x)⎦
sum(B)
#> c: 3⋅x
B %*% t(B)
#> c: ⎡ 2 ⎤
#> ⎢x 0 ⎥
#> ⎢ ⎥
#> ⎢ 2⎥
#> ⎣0 4⋅x ⎦
diag(B)
#> c: [x 2⋅x]
cbind(B, B)
#> c: ⎡x 0 x 0 ⎤
#> ⎢ ⎥
#> ⎣0 2⋅x 0 2⋅x⎦
rbind(B, B)
#> c: ⎡x 0 ⎤
#> ⎢ ⎥
#> ⎢0 2⋅x⎥
#> ⎢ ⎥
#> ⎢x 0 ⎥
#> ⎢ ⎥
#> ⎣0 2⋅x⎦
det(B)
#> c: 2
#> 2⋅x
QRdecomposition(B)
#> $Q
#> c: ⎡ x ⎤
#> ⎢─── 0 ⎥
#> ⎢│x│ ⎥
#> ⎢ ⎥
#> ⎢ x ⎥
#> ⎢ 0 ───⎥
#> ⎣ │x│⎦
#>
#> $R
#> c: ⎡│x│ 0 ⎤
#> ⎢ ⎥
#> ⎣ 0 2⋅│x│⎦
A <- matrix(c("a", 0, 0, 0, "a", "a", "a", 0, 0), 3, 3)
B <- as_sym(A)
eigenval(B)
#> [[1]]
#> [[1]]$eigval
#> c: a
#>
#> [[1]]$eigmult
#> [1] 2
#>
#>
#> [[2]]
#> [[2]]$eigval
#> c: 0
#>
#> [[2]]$eigmult
#> [1] 1
eigenvec(B)
#> [[1]]
#> [[1]]$eigval
#> c: 0
#>
#> [[1]]$eigmult
#> [1] 1
#>
#> [[1]]$eigvec
#> c: [-1 0 1]ᵀ
#>
#>
#> [[2]]
#> [[2]]$eigval
#> c: a
#>
#> [[2]]$eigmult
#> [1] 2
#>
#> [[2]]$eigvec
#> c: [1 0 0]ᵀ
eigen(eval(as_expr(B), list(a = 2)))
#> eigen() decomposition
#> $values
#> [1] 2 2 0
#>
#> $vectors
#> [,1] [,2] [,3]
#> [1,] 1 -1.000000e+00 -0.7071068
#> [2,] 0 2.220446e-16 0.0000000
#> [3,] 0 2.220446e-16 0.7071068
inv()
/
solve_lin()
solve_sys()
Below find an example with maximising the multinomial likelihood.
p <- as_sym(paste0("p", 1:3))
y <- as_sym(paste0("y", 1:3))
a <- as_sym("a")
l <- sum(y*log(p))
l
#> c: y₁⋅log(p₁) + y₂⋅log(p₂) + y₃⋅log(p₃)
L <- -l + a*(sum(p) - 1)
L
#> c: a⋅(p₁ + p₂ + p₃ - 1) - y₁⋅log(p₁) - y₂⋅log(p₂) - y₃⋅log(p₃)
tex(L)
#> [1] "a \\left(p_{1} + p_{2} + p_{3} - 1\\right) - y_{1} \\log{\\left(p_{1} \\right)} - y_{2} \\log{\\left(p_{2} \\right)} - y_{3} \\log{\\left(p_{3} \\right)}"
g <- der(L, list(p, a))
g
#> c: ⎡ y₁ y₂ y₃ ⎤
#> ⎢a - ── a - ── a - ── p₁ + p₂ + p₃ - 1⎥
#> ⎣ p₁ p₂ p₃ ⎦
sol <- solve_sys(g, list(p, a))
sol
#> Solution 1:
#> a = y₁ + y₂ + y₃
#> p1 = y₁
#> ────────────
#> y₁ + y₂ + y₃
#> p2 = y₂
#> ────────────
#> y₁ + y₂ + y₃
#> p3 = y₃
#> ────────────
#> y₁ + y₂ + y₃
sol[[1L]]$p1
#> c: y₁
#> ────────────
#> y₁ + y₂ + y₃
tex(sol[[1L]]$p1)
#> [1] "\\frac{y_{1}}{y_{1} + y_{2} + y_{3}}"
p <- as_sym(paste0("p", 1:3))
y <- as_sym(paste0("y", 1:3))
a <- as_sym("a")
l <- sum(y*log(p))
L <- -l + a*(sum(p) - 1)
g <- der(L, c(a, p))
sols <- solve_sys(g, list(a, p))
sol <- sols[[1L]]
sol
#> $a
#> c: y₁ + y₂ + y₃
#>
#> $p1
#> c: y₁
#> ────────────
#> y₁ + y₂ + y₃
#>
#> $p2
#> c: y₂
#> ────────────
#> y₁ + y₂ + y₃
#>
#> $p3
#> c: y₃
#> ────────────
#> y₁ + y₂ + y₃
H <- der2(L, list(p, a))
H
#> c: ⎡ y₁ ⎤
#> ⎢─── 0 0 1⎥
#> ⎢ 2 ⎥
#> ⎢p₁ ⎥
#> ⎢ ⎥
#> ⎢ y₂ ⎥
#> ⎢ 0 ─── 0 1⎥
#> ⎢ 2 ⎥
#> ⎢ p₂ ⎥
#> ⎢ ⎥
#> ⎢ y₃ ⎥
#> ⎢ 0 0 ─── 1⎥
#> ⎢ 2 ⎥
#> ⎢ p₃ ⎥
#> ⎢ ⎥
#> ⎣ 1 1 1 0⎦
H_sol <- subs(H, sol)
H_sol
#> c: ⎡ 2 ⎤
#> ⎢(y₁ + y₂ + y₃) ⎥
#> ⎢─────────────── 0 0 1⎥
#> ⎢ y₁ ⎥
#> ⎢ ⎥
#> ⎢ 2 ⎥
#> ⎢ (y₁ + y₂ + y₃) ⎥
#> ⎢ 0 ─────────────── 0 1⎥
#> ⎢ y₂ ⎥
#> ⎢ ⎥
#> ⎢ 2 ⎥
#> ⎢ (y₁ + y₂ + y₃) ⎥
#> ⎢ 0 0 ─────────────── 1⎥
#> ⎢ y₃ ⎥
#> ⎢ ⎥
#> ⎣ 1 1 1 0⎦
Note that all vectors in caracas
are column vectors.
plots the following in the plot window:
You can also provide a string instead:
giving
SymPy
directlyBelow we give a brief example of assumptions. First consider the Cholesky decomposition of a matrix:
This fails as A
is not positive (semi-)definite.
To ensure this, we need to impose restrictions on x
.
This is done by defining a symbol with an assumption about
positivity:
We continue and define B
, where it is important that
declare_symbols = FALSE
or else a new y
will
automatically be defined by caracas
overwriting the above
definition:
B <- as_sym("[[y + 1, 1], [1, 1]]", declare_symbols = FALSE)
B
#> c: ⎡y + 1 1⎤
#> ⎢ ⎥
#> ⎣ 1 1⎦
do_la(B, "cholesky")
#> c: ⎡ _______ ⎤
#> ⎢╲╱ y + 1 0 ⎥
#> ⎢ ⎥
#> ⎢ ___________⎥
#> ⎢ 1 ╱ 1 ⎥
#> ⎢───────── ╱ 1 - ───── ⎥
#> ⎢ _______ ╲╱ y + 1 ⎥
#> ⎣╲╱ y + 1 ⎦
It is possible to ask for properties (see https://docs.sympy.org/latest/modules/assumptions/ask.html):
# Multinomial likelihood
p <- as_sym(paste0("p", 1:3))
y <- as_sym(paste0("y", 1:3))
a <- as_sym("a")
l <- sum(y*log(p))
L <- -l + a*(sum(p) - 1)
L
#> c: a⋅(p₁ + p₂ + p₃ - 1) - y₁⋅log(p₁) - y₂⋅log(p₂) - y₃⋅log(p₃)
print(L, ascii = TRUE)
#> c: a⋅(p₁ + p₂ + p₃ - 1) - y₁⋅log(p₁) - y₂⋅log(p₂) - y₃⋅log(p₃)
g <- der(L, list(p, a))
sol <- solve_sys(g, list(p, a))
sol
#> Solution 1:
#> a = y₁ + y₂ + y₃
#> p1 = y₁
#> ────────────
#> y₁ + y₂ + y₃
#> p2 = y₂
#> ────────────
#> y₁ + y₂ + y₃
#> p3 = y₃
#> ────────────
#> y₁ + y₂ + y₃
print(sol, simplify = FALSE)
#> [[1]]
#> [[1]]$a
#> c: y₁ + y₂ + y₃
#>
#> [[1]]$p1
#> c: y₁
#> ────────────
#> y₁ + y₂ + y₃
#>
#> [[1]]$p2
#> c: y₂
#> ────────────
#> y₁ + y₂ + y₃
#>
#> [[1]]$p3
#> c: y₃
#> ────────────
#> y₁ + y₂ + y₃
as.character(g)
#> [1] "[a - y1/p1, a - y2/p2, a - y3/p3, p1 + p2 + p3 - 1]"
as_character_matrix(g)
#> [,1] [,2] [,3] [,4]
#> [1,] "a - y1/p1" "a - y2/p2" "a - y3/p3" "p1 + p2 + p3 - 1"
The following options are available:
caracas.print.method
(utf8
is default,
others are: prettyascii
, ascii
,
compactascii
)caracas.print.rowvec
caracas.print.sol.simplify
sol
#> Solution 1:
#> a = y₁ + y₂ + y₃
#> p1 = y₁
#> ────────────
#> y₁ + y₂ + y₃
#> p2 = y₂
#> ────────────
#> y₁ + y₂ + y₃
#> p3 = y₃
#> ────────────
#> y₁ + y₂ + y₃
L
#> c: a⋅(p₁ + p₂ + p₃ - 1) - y₁⋅log(p₁) - y₂⋅log(p₂) - y₃⋅log(p₃)
options(caracas.print.method = "prettyascii")
sol
#> Solution 1:
#> a = y1 + y2 + y3
#> p1 = y1
#> ------------
#> y1 + y2 + y3
#> p2 = y2
#> ------------
#> y1 + y2 + y3
#> p3 = y3
#> ------------
#> y1 + y2 + y3
L
#> c: a*(p1 + p2 + p3 - 1) - y1*log(p1) - y2*log(p2) - y3*log(p3)
options(caracas.print.method = "ascii")
sol
#> Solution 1:
#> a = y1 + y2 + y3
#> p1 = y1/(y1 + y2 + y3)
#> p2 = y2/(y1 + y2 + y3)
#> p3 = y3/(y1 + y2 + y3)
L
#> c: a*(p1 + p2 + p3 - 1) - y1*log(p1) - y2*log(p2) - y3*log(p3)
options(caracas.print.method = NULL) # Or 'utf8'
sol
#> Solution 1:
#> a = y₁ + y₂ + y₃
#> p1 = y₁
#> ────────────
#> y₁ + y₂ + y₃
#> p2 = y₂
#> ────────────
#> y₁ + y₂ + y₃
#> p3 = y₃
#> ────────────
#> y₁ + y₂ + y₃
L
#> c: a⋅(p₁ + p₂ + p₃ - 1) - y₁⋅log(p₁) - y₂⋅log(p₂) - y₃⋅log(p₃)
p
#> c: [p₁ p₂ p₃]ᵀ
options(caracas.print.rowvec = FALSE)
p
#> c: ⎡p₁⎤
#> ⎢ ⎥
#> ⎢p₂⎥
#> ⎢ ⎥
#> ⎣p₃⎦
options(caracas.print.rowvec = NULL) # reset to default (TRUE)
sol
#> Solution 1:
#> a = y₁ + y₂ + y₃
#> p1 = y₁
#> ────────────
#> y₁ + y₂ + y₃
#> p2 = y₂
#> ────────────
#> y₁ + y₂ + y₃
#> p3 = y₃
#> ────────────
#> y₁ + y₂ + y₃
options(caracas.print.sol.simplify = FALSE)
sol
#> [[1]]
#> [[1]]$a
#> c: y₁ + y₂ + y₃
#>
#> [[1]]$p1
#> c: y₁
#> ────────────
#> y₁ + y₂ + y₃
#>
#> [[1]]$p2
#> c: y₂
#> ────────────
#> y₁ + y₂ + y₃
#>
#> [[1]]$p3
#> c: y₃
#> ────────────
#> y₁ + y₂ + y₃
options(caracas.print.sol.simplify = NULL) # reset to default (TRUE)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.