The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Consider this model: \[ x_i = a x_{i-1} + e_i, \quad i=1, \dots, 3 \] and \(x_0=e_0\). All terms \(e_0, \dots, e_3\) are independent and \(N(0,v^2)\) distributed. Let \(e=(e_0, \dots, e_3)\) and \(x=(x_0, \dots x_3)\). Hence \(e \sim N(0, v^2 I)\). Isolating error terms gives \[ e= \left[\begin{matrix}e_{0}\\e_{1}\\e_{2}\\e_{3}\end{matrix}\right] = \left[\begin{matrix}1 & 0 & 0 & 0\\- a & 1 & 0 & 0\\0 & - a & 1 & 0\\0 & 0 & - a & 1\end{matrix}\right] \left[\begin{matrix}x_{0}\\x_{1}\\x_{2}\\x_{3}\end{matrix}\right] = L_1 x \]
Since \(\mathbf{Var}(e)=v^2 I\) we have \(\mathbf{Var}(e)=v^2 I=L \mathbf{Var}(x) L'\) so the covariance matrix of \(x\) is \(V_1=\mathbf{Var}(x) = v^2 L^- (L^-)'\) while the concentration matrix (the inverse covariances matrix) is \(K=v^{-2}L' L\).
\[\begin{align} K_1 &= \left[\begin{matrix}\frac{a^{2} + 1}{v_{2}} & - \frac{a}{v_{2}} & 0 & 0\\- \frac{a}{v_{2}} & \frac{a^{2} + 1}{v_{2}} & - \frac{a}{v_{2}} & 0\\0 & - \frac{a}{v_{2}} & \frac{a^{2} + 1}{v_{2}} & - \frac{a}{v_{2}}\\0 & 0 & - \frac{a}{v_{2}} & \frac{1}{v_{2}}\end{matrix}\right] \\ V_1 &= \left[\begin{matrix}v_{2} & a v_{2} & a^{2} v_{2} & a^{3} v_{2}\\a v_{2} & v_{2} \left(a^{2} + 1\right) & v_{2} \left(a^{3} + a\right) & v_{2} \left(a^{4} + a^{2}\right)\\a^{2} v_{2} & v_{2} \left(a^{3} + a\right) & v_{2} \left(a^{4} + a^{2} + 1\right) & v_{2} \left(a^{5} + a^{3} + a\right)\\a^{3} v_{2} & v_{2} \left(a^{4} + a^{2}\right) & v_{2} \left(a^{5} + a^{3} + a\right) & v_{2} \left(a^{6} + a^{4} + a^{2} + 1\right)\end{matrix}\right] \end{align}\]
Augment the \(AR(1)\) process above with \(y_i=b x_i + u_i\) for \(i=1,2,3\). Suppose \(u_i\sim N(0, w^2)\) and all \(u_i\) are independent and inpendent of \(e\). Then \((e,u)\) can be expressed in terms of \((x,y)\) as \[ (e,u) = \left[\begin{matrix}e_{0}\\e_{1}\\e_{2}\\e_{3}\\u_{1}\\u_{2}\\u_{3}\end{matrix}\right] = \left[\begin{matrix}1 & 0 & 0 & 0 & 0 & 0 & 0\\- a & 1 & 0 & 0 & 0 & 0 & 0\\0 & - a & 1 & 0 & 0 & 0 & 0\\0 & 0 & - a & 1 & 0 & 0 & 0\\0 & - b & 0 & 0 & 1 & 0 & 0\\0 & 0 & - b & 0 & 0 & 1 & 0\\0 & 0 & 0 & - b & 0 & 0 & 1\end{matrix}\right] \left[\begin{matrix}x_{0}\\x_{1}\\x_{2}\\x_{3}\\y_{1}\\y_{2}\\y_{3}\end{matrix}\right] = L_2 (x,y) \] where
N <- 3
L2 <- diag("1", 1 + 2*N)
L2[cbind(1 + (1:N), 1:N)] <- "-a"
L2[cbind(1 + N + (1:N), 1 + 1:N)] <- "-b"
L2 <- as_sym(L2)
Veu <- diag(1, 7)
diag(Veu)[1:4] <- "v2"
diag(Veu)[5:7] <- "w2"
Veu
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] "v2" "0" "0" "0" "0" "0" "0"
#> [2,] "0" "v2" "0" "0" "0" "0" "0"
#> [3,] "0" "0" "v2" "0" "0" "0" "0"
#> [4,] "0" "0" "0" "v2" "0" "0" "0"
#> [5,] "0" "0" "0" "0" "w2" "0" "0"
#> [6,] "0" "0" "0" "0" "0" "w2" "0"
#> [7,] "0" "0" "0" "0" "0" "0" "w2"
Veu <- as_sym(Veu)
Veu
#> c: ⎡v₂ 0 0 0 0 0 0 ⎤
#> ⎢ ⎥
#> ⎢0 v₂ 0 0 0 0 0 ⎥
#> ⎢ ⎥
#> ⎢0 0 v₂ 0 0 0 0 ⎥
#> ⎢ ⎥
#> ⎢0 0 0 v₂ 0 0 0 ⎥
#> ⎢ ⎥
#> ⎢0 0 0 0 w₂ 0 0 ⎥
#> ⎢ ⎥
#> ⎢0 0 0 0 0 w₂ 0 ⎥
#> ⎢ ⎥
#> ⎣0 0 0 0 0 0 w₂⎦
L2inv <- inv(L2)
V2 <- L2inv %*% Veu %*% t(L2inv)
K2 <- t(L2) %*% inv(Veu) %*% L2
\[\begin{align} K_2 &= \left[\begin{matrix}\frac{a^{2}}{v_{2}} + \frac{1}{v_{2}} & - \frac{a}{v_{2}} & 0 & 0 & 0 & 0 & 0\\- \frac{a}{v_{2}} & \frac{a^{2}}{v_{2}} + \frac{b^{2}}{w_{2}} + \frac{1}{v_{2}} & - \frac{a}{v_{2}} & 0 & - \frac{b}{w_{2}} & 0 & 0\\0 & - \frac{a}{v_{2}} & \frac{a^{2}}{v_{2}} + \frac{b^{2}}{w_{2}} + \frac{1}{v_{2}} & - \frac{a}{v_{2}} & 0 & - \frac{b}{w_{2}} & 0\\0 & 0 & - \frac{a}{v_{2}} & \frac{b^{2}}{w_{2}} + \frac{1}{v_{2}} & 0 & 0 & - \frac{b}{w_{2}}\\0 & - \frac{b}{w_{2}} & 0 & 0 & \frac{1}{w_{2}} & 0 & 0\\0 & 0 & - \frac{b}{w_{2}} & 0 & 0 & \frac{1}{w_{2}} & 0\\0 & 0 & 0 & - \frac{b}{w_{2}} & 0 & 0 & \frac{1}{w_{2}}\end{matrix}\right] \\ V_2 &= \left[\begin{matrix}v_{2} & a v_{2} & a^{2} v_{2} & a^{3} v_{2} & a b v_{2} & a^{2} b v_{2} & a^{3} b v_{2}\\a v_{2} & a^{2} v_{2} + v_{2} & a^{3} v_{2} + a v_{2} & a^{4} v_{2} + a^{2} v_{2} & a^{2} b v_{2} + b v_{2} & a^{3} b v_{2} + a b v_{2} & a^{4} b v_{2} + a^{2} b v_{2}\\a^{2} v_{2} & a^{3} v_{2} + a v_{2} & a^{4} v_{2} + a^{2} v_{2} + v_{2} & a^{5} v_{2} + a^{3} v_{2} + a v_{2} & a^{3} b v_{2} + a b v_{2} & a^{4} b v_{2} + a^{2} b v_{2} + b v_{2} & a^{5} b v_{2} + a^{3} b v_{2} + a b v_{2}\\a^{3} v_{2} & a^{4} v_{2} + a^{2} v_{2} & a^{5} v_{2} + a^{3} v_{2} + a v_{2} & a^{6} v_{2} + a^{4} v_{2} + a^{2} v_{2} + v_{2} & a^{4} b v_{2} + a^{2} b v_{2} & a^{5} b v_{2} + a^{3} b v_{2} + a b v_{2} & a^{6} b v_{2} + a^{4} b v_{2} + a^{2} b v_{2} + b v_{2}\\a b v_{2} & a^{2} b v_{2} + b v_{2} & a^{3} b v_{2} + a b v_{2} & a^{4} b v_{2} + a^{2} b v_{2} & a^{2} b^{2} v_{2} + b^{2} v_{2} + w_{2} & a^{3} b^{2} v_{2} + a b^{2} v_{2} & a^{4} b^{2} v_{2} + a^{2} b^{2} v_{2}\\a^{2} b v_{2} & a^{3} b v_{2} + a b v_{2} & a^{4} b v_{2} + a^{2} b v_{2} + b v_{2} & a^{5} b v_{2} + a^{3} b v_{2} + a b v_{2} & a^{3} b^{2} v_{2} + a b^{2} v_{2} & a^{4} b^{2} v_{2} + a^{2} b^{2} v_{2} + b^{2} v_{2} + w_{2} & a^{5} b^{2} v_{2} + a^{3} b^{2} v_{2} + a b^{2} v_{2}\\a^{3} b v_{2} & a^{4} b v_{2} + a^{2} b v_{2} & a^{5} b v_{2} + a^{3} b v_{2} + a b v_{2} & a^{6} b v_{2} + a^{4} b v_{2} + a^{2} b v_{2} + b v_{2} & a^{4} b^{2} v_{2} + a^{2} b^{2} v_{2} & a^{5} b^{2} v_{2} + a^{3} b^{2} v_{2} + a b^{2} v_{2} & a^{6} b^{2} v_{2} + a^{4} b^{2} v_{2} + a^{2} b^{2} v_{2} + b^{2} v_{2} + w_{2}\end{matrix}\right] \end{align}\]
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.