Package 'cancerradarr'

July 18, 2025

Title Cancer RADAR Project Tool

Version 1.3.1

Description

Cancer RADAR is a project which aim is to develop an infrastructure that allows quantifying the risk of cancer by migration background across Europe. This package contains a set of functions cancer registries partners should use to reshape 5 year-age group cancer incidence data into a set of summary statistics (see Boyle & Parkin (1991, ISBN:978-92-832-1195-2)) in lines with Cancer RADAR data protections rules.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr (>= 1.1.0), epitools, magrittr, openxlsx (>= 4.2.7), purrr, rmarkdown, rlang, stats, stringr, tidyr, utils, plyr

Depends R (>= 4.1.0)

Suggests plotly, shiny, quarto, tidyverse, DT, gtools, testthat (>= 3.0.0), knitr

LazyData true

Config/testthat/edition 3

VignetteBuilder quarto

NeedsCompilation no

Author Nienke Alberts [aut], Damien Georges [aut, cre] (ORCID: <https://orcid.org/0000-0003-2425-7591>), Stefano Rosso [aut], Iacopo Baussano [aut] (ORCID: <https://orcid.org/0000-0002-7322-1862>)

Maintainer Damien Georges <georgesd@iarc.who.int>

Repository CRAN

Date/Publication 2025-07-18 14:40:20 UTC

Contents

age_standardized_incidence_rates						 . 2
aggregated_ageg_name	• •					 . 3
chopped.vector.list						 . 4
chop_vector						
create_canradar_summary_file						
create_registry_input_file						 6
create_static_report						
custom_ageg_aggregation						
dat.aggr						
dat.asr.cat						
dat.cob						
globocan.2022.eu						 10
incidence rates						
incidence rates difference						 12
incidence_rates_ratio						
indirect_proportional_incidence_ratio						
indirect_standardized_incidence_ratio						
open_canradar_dictionary						
proportional_rates						
read_cancerradar_output_01						
read_cancerradar_output_02						
run_dynamic_report						
standardized_incidence_rate_difference						
standardized_incidence_rate_ratio						
	• •	•	•	•	•	
						23

age_standardized_incidence_rates

Age-standardized incidence rate (asir)

Description

Age-standardized incidence rate (asir)

Usage

Index

```
age_standardized_incidence_rates(ncan, py, pystd, ncan.min = 5)
```

Arguments

ncan	integer, (age-specific) number of cancers in the population of interest
ру	integer, (age-specific) person-year in the the population of interest
pystd	numeric, (age-specific) standard population person-years (e.g. standard world population)

ncan.min integer, minimum number of observation required not to mask the CI's out Age-standardized incidence rate (asir) and associated 95% confidence interval are computing assuming normal distribution of the asir. asir is a summary statistics that should be computed per group of individuals providing age specific counts.

Value

a 1 line and 3 column data.frame containing the asir (est) and associated 95% CI (lci, uci)

References

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

Examples

```
ncan <- 1:10
py <- 101:110
pystd <- 10:1
ncan.min <- 5
age_standardized_incidence_rates(ncan, py, pystd, ncan.min)
age_standardized_incidence_rates(ncan, py, pystd, sum(ncan) + 1)</pre>
```

aggregated_ageg_name Compute the aggregated age group names from a vector of more detailed age groups

Description

Compute the aggregated age group names from a vector of more detailed age groups

Usage

```
aggregated_ageg_name(selected.ageg, ageg.sep = "_")
```

Arguments

selected.ageg character, the fine grain age group vector ageg.sep character, the ageg group separator character

Value

character, the name of the aggregated age group

```
ageg.in <- c('15_19', '20_24', '25_29')
aggregated_ageg_name(ageg.in)</pre>
```

chopped.vector.list Pre-computed choped combination for vectors size 1 to 18

Description

This is a list containing all the possible combination of slices to chop vectors of size 1 to 18. It is useful to compute custom age group aggregation to ensure we are not disclosing age group with too few cancer cases.

Usage

chopped.vector.list

Format

A 18 item list:

each element is a matrix containing all the possible chop combinations to aggregate a vector of size n. ...

chop_vector

Generate all the possible combinations of slices in a chopped vector

Description

Generate all the possible combinations of slices in a chopped vector

Usage

```
chop_vector(vect.size = 3)
```

Arguments

vect.size int, the size of the vector

Value

a matrix containing all the possible slices to chope a vector per line

Examples

chop_vector(3)

create_canradar_summary_file

Compute summary statistics from 5 years age-group cancer registry data

Description

Compute summary statistics from 5 years age-group cancer registry data

Usage

```
create_canradar_summary_file(
  filename.in,
  filename.out,
  ncan.min = 5,
  include.by.cob.stat = TRUE,
  verbose = TRUE
)
```

Arguments

filename.in	file path, the file containing the 5 years age counts of cancers stratified per cancer type, sex and country of birth	
filename.out	file path, the file where summary .xlsx file will be save	
ncan.min	integer, the minimum number of cancer per age group o be displayed	
include.by.cob.stat		
	logical, (TRUE by default) should the statistic per country-of-birth be computed and included in the output file.	
verbose	logical, shall progress message be printed	

Value

a .xlsx with all the summary statistics needed for Cancer RADAR project to be transmitted to project PIs.

Examples

Update file.in with the path to the input file containing your registry data
(e.g. file.filled <- "cancerRADAR_input.xlsx")
file.in <- system.file("extdata", "ex_cancerRADAR_input_filled.xlsx", package = "cancerradarr")
file.out <- 'cancerRADAR_input.xlsx'
for cancer radar data submission, we advise to use the parameter ncan.min = 5 and
include.by.cob.stat = TRUE
create_canradar_summary_file(file.in, file.out, ncan.min = 20, include.by.cob.stat = FALSE)
remove the file to pass package computation tests
unlink(file.out)</pre>

```
create_registry_input_file
```

Create a template file to be filled by cancer registry partners

Description

Create a template file to be filled by cancer registry partners

Usage

```
create_registry_input_file(filename = "cancerRADAR_input.xlsx", verbose = TRUE)
```

Arguments

filename	file path, the name of the template file to be created
verbose	logical, shall progress message be printed

Value

a template .xlsx file is created on the hard drive.

Examples

```
file.in <- 'input_file_test.xlsx'
create_registry_input_file(file.in)
## remove the file to pass package computation tests
unlink(file.in)</pre>
```

create_static_report Create a static report from cancer RADAR output file

Description

Create a static report from cancer RADAR output file

Usage

```
create_static_report(filename.out = "")
```

Arguments

filename.out file path, the path to a cancer RADAR output file This function will create a html report that could be useful to check the data that will be transmitted to IARC.

nothing is returned, but a html file created with some summary statistics and graphs out of the file that should be transmitted with IARC

```
custom_ageg_aggregation
```

Smart aggregation of cancer cases per age group

Description

Smart aggregation of cancer cases per age group

Usage

```
custom_ageg_aggregation(
   dat,
   ncan.min = 5,
   add.total = FALSE,
   ncan.lab = "ncan",
   py.lab = "py"
)
```

Arguments

dat	tibble, a single cancer/sex/country tibble containing cancer cases from a registry. It sould contains the column ageg and ncan
ncan.min	integer, the minimal number of cancer in each category
add.total	logical, should the 'total' category added to the output dataset
ncan.lab	character, the column label where cancer cases are stored
py.lab	character, the column label where (optional) population at risk are stored

Value

aggregated dataset where all the age group contains at least ncan.min cancers cases

```
dat <-
   dplyr::tribble(
        ~ ageg, ~ ncan,
        '00_04', 0,
        '05_09', 0,
        '10_14', 0,
        '15_19', 0,
        '20_24', 1,
        '25_29', 2,
        '30_34', 4,</pre>
```

dat.aggr

```
'35_39', 5,
'40_44', 1,
'45_49', 10,
'50_54', 14,
'55_59', 1,
'60_64', 2,
'65_69', 2,
'70_74', 5,
'75_79', 1,
'80_84', 0,
'85', 0
)
custom_ageg_aggregation(dat, 0)
custom_ageg_aggregation(dat, 5)
custom_ageg_aggregation(dat, 10)
custom_ageg_aggregation(dat, 100)
```

```
dat.aggr
```

Geographical aggregation used for cancerradarr

Description

In order to prevent loose of data in case of too low effective, several geographical aggregation can be considered. In this table are stored the different level of aggregation and the aggregation correspondence table considered.

Usage

dat.aggr

Format

A data frame with 250 rows and 5 columns:

cob_iso3 Country ISO3 code

un_region UN region

un_subregion UN subregion

hdi_cat HDI 2023 category

any_migr any migration background ...

Details

A multi-columns dataset containing all the countries of birth (as ISO3 code) and other geographical aggregation rules

8

dat.asr.cat

Description

A multi-columns dataset containing for all the countries of birth (as ISO3 code), sex and cancer type combinations the quariles of cancer burden in country of origin burden. The quariles (0%-24%, 25%-49%, 50%-74% and 75-100%) are based on the ASIR from GLOBOCAN 2022.

Usage

dat.asr.cat

Format

A data frame with 2,220 rows and 5 columns:

cob_iso3 Country ISO3 code

sex targeted sex

can the caqncer type

asr GLOBOCAN 2022 age-standardized cancer incidence rate

asr_rank_cat GLOBOCAN 2022 age-standardized cancer incidence rate quartile category ...

dat.cob

Countries label and countries codes

Description

A 2 column dataset containing all the countries of birth (with associated countries codes) included in Cancer RADAR project

Usage

dat.cob

Format

A data frame with 251 rows and 3 columns:

cob_label Country name

cob_code Country code

cob_iso3 Country ISO3 code (used as unique id) ...

globocan.2022.eu

Description

A multi-columns dataset containing for all the European countries (UN definition) (as ISO3 code), sex and cancer type combinations the number of cases and population at risk estimated in GLOBO-CAN 2022. This data are used in cancerradarr to compute the relative index on a standard reference population that could be more easily compared between registries. In addition to individual European countries, aggregated areas such as E27 (European Union 27 countries) and EUN (all the UN European countries) are stred in the dataset

Usage

globocan.2022.eu

Format

A data frame with 6,384 rows and 6 columns:

cob_iso3 Country ISO3 code

sex targeted sex

ageg targeted age group

can the caqncer type

ncanref number of cancer cases estimated in GLOBOCAN 2022

pyref population at risk estimated in GLOBOCAN 2022 ...

Source

https://gco.iarc.fr/today/en

References

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4. PMID: 38572751.

Description

Compute crude incidence rates

Usage

```
incidence_rates(ncan, py, ncan.min = 5)
```

Arguments

ncan	integer, number of cancer
ру	integer, number of person-year
ncan.min	integer, minimum number of observation required not to mask the CI's out
	Crude incidence rates and associated 95% confidence interval are computing assuming a Poisson distribution and the exact method.

Value

a 3 column data.frame containing the crude incidence rate estimate (est) and associated 95% CI (lci, uci)

References

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

See Also

epitools::pois.exact()

```
ncan <- c(1, 10, 100)
py <- c(10, 100, 1000)
incidence_rates(ncan, py, 5)</pre>
```

incidence_rates_difference

Compute incidence rates difference

Description

Compute incidence rates difference

Usage

```
incidence_rates_difference(ncan, py, ncanref, pyref, ncan.min = 5)
```

Arguments

ncan	integer, number of cancers in the population of interest
ру	integer, person-year of the the population of interest
ncanref	integer, number of cancers in the reference population
pyref	integer, person-year of the the reference population
ncan.min	integer, minimum number of observation required not to mask the CI's out
	Incidence rates differences and associated 95% confidence interval are comput- ing assuming normal distribution of the differences

Value

a 3 column data.frame containing the incidence rates difference (est) and associated 95% CI (lci, uci)

Examples

```
ncan <- 1:10
py <- 101:110
ncanref <- 41:50
pyref <- 251:260
ncan.min <- 5</pre>
```

incidence_rates_difference(ncan, py, ncanref, pyref, ncan.min)

incidence_rates_ratio Compute incidence rates ratio

Description

Compute incidence rates ratio

Usage

```
incidence_rates_ratio(ncan, py, ncanref, pyref, ncan.min = 5)
```

Arguments

ncan	integer, number of cancers in the population of interest
ру	integer, person-year of the the population of interest
ncanref	integer, number of cancers in the reference population
pyref	integer, person-year of the the reference population
ncan.min	integer, minimum number of observation required not to mask the CI's out
	Incidence rates ratio and associated 95% confidence interval are computing as- suming normal distribution of the ratios on the log scale.

Value

a 3 column data.frame containing the incidence rates ratio (est) and associated 95% CI (lci, uci)

References

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

```
ncan <- 1:10
py <- 101:110
ncanref <- 41:50
pyref <- 251:260
ncan.min <- 5
```

indirect_proportional_incidence_ratio

Compute the indirect proportional incidence ratio (pir)

Description

Compute the indirect proportional incidence ratio (pir)

Usage

```
indirect_proportional_incidence_ratio(
    ncan,
    ntot,
    ncanref,
    ntotref,
    ncan.min = 5
)
```

Arguments

ncan	integer, (age-specific) number of cancers in the population of interest
ntot	integer, (age-specific) total number of cancer the the population of interest
ncanref	integer, (age-specific) number of cancers in the reference population
ntotref	integer, (age-specific) total number of cancer the the reference of interest
ncan.min	integer, minimum number of observation required not to mask the CI's out
	Indirect proportional incidence ratio and associated 95% confidence interval are computing assuming normal distribution of the pir on the log scale. pir is a summary statistics that should be computed per group of individuals providing age specific counts.

Value

a 1 line and 3 column data.frame containing the pir (est) and associated 95% CI (lci, uci)

References

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

```
ncan <- 1:10
ntot <- 11:20
ncanref <- 41:50
ntotref <- 251:260
ncan.min <- 5</pre>
```

```
indirect_proportional_incidence_ratio(ncan, ntot, ncanref, ntotref, ncan.min)
indirect_proportional_incidence_ratio(ncan, ntot, ncanref, ntotref, sum(ncan) + 1)
```

Description

Compute indirect standardized incidence ratio (sir)

Usage

```
indirect_standardized_incidence_ratio(ncan, py, ncanref, pyref, ncan.min = 5)
```

Arguments

ncan	integer, (age-specific) number of cancers in the population of interest
ру	integer, (age-specific) person-year of the the population of interest
ncanref	integer, (age-specific) number of cancers in the reference population
pyref	integer, (age-specific) person-year of the the reference population
ncan.min	integer, minimum number of observation required not to mask the CI's out
	Standardized incidence ratio (sir) and associated 95% confidence interval are computing assuming normal distribution of the pir on the log scale. sir is a summary statistics that should be computed per group of individuals providing age specific counts.

Value

a 1 line and 3 column data.frame containing the sir (est) and associated 95% CI (lci, uci)

References

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

Examples

```
ncan <- 1:10
py <- 101:110
ncanref <- 41:50
pyref <- 251:260
ncan.min <- 5</pre>
```

indirect_standardized_incidence_ratio(ncan, py, ncanref, pyref, ncan.min)
indirect_standardized_incidence_ratio(ncan, py, ncanref, pyref, sum(ncan) + 1)

open_canradar_dictionary

Open cancer RADAR output file dictionary

Description

Calling this function will open the dictionary describing sheets and variables stored in the cancer summary file (output file generated by create_canradar_summary_file function). It could be useful for the cancer registries to check what kind of data they will be sharing. Note that a temporary copy of the dictionary is created on your hard drive to prevent from unwanted file modification.

Usage

```
open_canradar_dictionary()
```

Value

the path to a temporary file where cancer RADAR dictionary is stored

Examples

open_canradar_dictionary()

proportional_rates Compute proportional rates

Description

Compute proportional rates

Usage

```
proportional_rates(ncan, ntot, ncan.min = 5)
```

Arguments

ncan	integer, number of cancer of interest
ntot	integer, overal number of cancer
ncan.min	integer, minimum number of observation required not to mask the CI's out
	Proportional incidence rates and associated 95% confidence interval are com- puting assuming a Binomial distribution and the Clopper and Pearson (1934) procedure.

a 3 column data.frame containing the proportional incidence rate estimate (est) and associated 95% CI (lci, uci)

References

C. J. CLOPPER, B.Sc., E. S. PEARSON, D.Sc., THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL, Biometrika, Volume 26, Issue 4, December 1934, Pages 404–413, https://doi.org/10.1093/biomet/26.4.404

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

See Also

stats::binom.test()

Examples

```
ncan <- c(1, 10, 100)
ntot <- c(10, 100, 1000)
proportional_rates(ncan, ntot, 5)</pre>
```

read_cancerradar_output_01

Read cancer registry summary statistics (non age-specific)

Description

Read cancer registry summary statistics (non age-specific)

Usage

```
read_cancerradar_output_01(filename.out, aggr.level = "cob_iso3")
```

Arguments

filename.out	file path, the path to a cancer RADAR output file
aggr.level	character, the aggregation level to be considered. Should be one of cob_iso3 (country of birth; smaller unit), un_region (UN region), un_subergion (UN sub-region), hdi_cat (HDI category), asr_rank_cat (cancer burden category in the country of birth), any_migr (any migration background)

a tibble with 9 columns

- reg_label: factor, the chosen aggregation level id
- sex: character, male/female
- ageg: character, age group (here total)
- can: character, the cancer type
- ref: character, the reference population for relative index
- index: character, the type of index
- est: dbl, the index estimator
- lci: dbl, the index confidence interval lower bound
- uci: dbl, the index confidence interval upper bound

Examples

```
filename.out <- system.file('extdata/ex_cancerRADAR_output.xlsx', package = "cancerradarr")
dat.out <- read_cancerradar_output_01(filename.out, 'un_region')
head(dat.out)</pre>
```

read_cancerradar_output_02 Read cancer registry summary statistics (age-specific incidence rate

Description

Read cancer registry summary statistics (age-specific incidence rate and proportional rates)

Usage

```
read_cancerradar_output_02(filename.out, aggr.level = "cob_iso3")
```

and proportional rates)

Arguments

filename.out	file path, the path to a cancer RADAR output file
aggr.level	character, the aggregation level to be considered. Should be one of cob_iso3 (country of birth; smaller unit), un_region (UN region), un_subergion (UN sub-region), hdi_cat (HDI category), asr_rank_cat (cancer burden category in the country of birth), any_migr (any migration background)

18

a tibble with 11 columns

- reg_label: factor, the chosen aggregation level id
- sex: character, male/female
- ageg: character, age group (here total)
- can: character, the cancer type
- index: character, the type of index
- est: dbl, the index estimator
- lci: dbl, the index confidence interval lower bound
- uci: dbl, the index confidence interval upper bound
- ageg_sta: dbl, the age group starting age
- ageg_sto: dbl, the age group stopping age
- ageg_mid: dbl, the age group middle age

Examples

```
filename.out <- system.file('extdata/ex_cancerRADAR_output.xlsx', package = "cancerradarr")
dat.out <- read_cancerradar_output_02(filename.out, 'un_region')
head(dat.out)</pre>
```

run_dynamic_report Create a dynamic report from cancer RADAR output file

Description

Create a dynamic report from cancer RADAR output file

Usage

```
run_dynamic_report(filename.out = "")
```

Arguments

filename.out	file path, the path to a cancer RADAR output file
	This function will open a shiny app where cancer registries can visually check
	the data they will be transmitted to IARC.

Value

nothing is returned

standardized_incidence_rate_difference

Age-standardized incidence rates differences (asird)

Description

Age-standardized incidence rates differences (asird)

Usage

```
standardized_incidence_rate_difference(
   ncan,
   py,
   ncanref,
   pyref,
   pystd,
   ncan.min = 5
)
```

Arguments

ncan	integer, (age-specific) number of cancers in the population of interest
ру	integer, (age-specific) person-year in the the population of interest
ncanref	integer, (age-specific) number of cancers in the reference population
pyref	integer, (age-specific) person-year in the the reference population
pystd	numeric, (age-specific) standard population person-years (e.g. standard world population)
ncan.min	integer, minimum number of observation required not to mask the CI's out Age-standardized incidence rate difference (asird) is computed without confi- dence interval estimation for now. asird is a summary statistics that should be computed per group of individuals providing age specific counts.

Value

a 1 line and 3 column data.frame containing the pir (est) and associated 95% CI (lci, uci)

References

https://www.hsph.harvard.edu/thegeocodingproject/analytic-methods/

```
ncan <- 1:10
py <- 101:110
ncanref <- 41:50
pyref <- 251:260</pre>
```

```
pystd <- 10:1
ncan.min <- 5
standardized_incidence_rate_difference(ncan, py, ncanref, pyref, pystd, ncan.min)
standardized_incidence_rate_difference(ncan, py, ncanref, pyref, pystd, sum(ncan) + 1)
```

${\tt standardized_incidence_rate_ratio}$

Age-standardized incidence rates ratio (asirr)

Description

Age-standardized incidence rates ratio (asirr)

Usage

```
standardized_incidence_rate_ratio(
    ncan,
    py,
    ncanref,
    pyref,
    pystd,
    ncan.min = 5
)
```

Arguments

ncan	integer, (age-specific) number of cancers in the population of interest
ру	integer, (age-specific) person-year in the the population of interest
ncanref	integer, (age-specific) number of cancers in the reference population
pyref	integer, (age-specific) person-year in the the reference population
pystd	numeric, (age-specific) standard population person-years (e.g. standard world population)
ncan.min	integer, minimum number of observation required not to mask the CI's out Age-standardized incidence rate ratio (asirr) and associated 95% confidence in- terval are computing Armitage and Berry (1987) formula. asird is a summary statistics that should be computed per group of individuals providing age spe- cific counts.

Value

a 1 line and 3 column data.frame containing the pir (est) and associated 95% CI (lci, uci)

References

Boyle P, Parkin DM. Cancer registration: principles and methods. Statistical methods for registries. IARC Sci Publ. 1991;(95):126-58. PMID: 1894318.

Examples

```
ncan <- 1:10
py <- 101:110
ncanref <- 41:50
pyref <- 251:260
pystd <- 10:1
ncan.min <- 5
standardized_incidence_rate_ratio(ncan, py, ncanref, pyref, pystd, ncan.min)
standardized_incidence_rate_ratio(ncan, py, ncanref, pyref, pystd, sum(ncan) + 1)</pre>
```

22

Index

* datasets chopped.vector.list,4 dat.aggr, 8 dat.asr.cat,9 dat.cob,9 globocan.2022.eu, 10 * data chopped.vector.list,4 dat.aggr, 8 dat.asr.cat,9 dat.cob,9 globocan.2022.eu, 10 * main create_canradar_summary_file, 5 create_registry_input_file, 6 run_dynamic_report, 19 * summary-stat age_standardized_incidence_rates, 2 incidence_rates, 11 incidence_rates_difference, 12 incidence_rates_ratio, 13 indirect_proportional_incidence_ratio, 14 indirect_standardized_incidence_ratio, 15 proportional_rates, 16 standardized_incidence_rate_difference, 20 standardized_incidence_rate_ratio, 21 age_standardized_incidence_rates, 2 aggregated_ageg_name, 3

chop_vector,4
chopped.vector.list,4
create_canradar_summary_file,5,16
create_registry_input_file,6
create_static_report,6

custom_ageg_aggregation, 7 dat.aggr, 8 dat.asr.cat,9 dat.cob,9 epitools::pois.exact(), 11 globocan.2022.eu, 10 incidence_rates, 11 incidence_rates_difference, 12 incidence_rates_ratio, 13 indirect_proportional_incidence_ratio, 14 indirect_standardized_incidence_ratio, 15 open_canradar_dictionary, 16 proportional_rates, 16 read_cancerradar_output_01, 17 read_cancerradar_output_02, 18 run_dynamic_report, 19 standardized_incidence_rate_difference, 20 standardized_incidence_rate_ratio, 21 stats::binom.test(), 17