The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
For this vignette, please load the campsismod
package
and load the minimalist model that we have created in the first
vignette.
Let’s invent a very basic scenario: we would like to infuse
1000
into the central compartment with a fixed rate of
100
and a fixed lag time of 2
.
First, we’re going to delete the initial condition that we had in the
minimalist model. This is done as follows:
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## # A tibble: 0 × 0
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
This is strictly equal as doing (if you prefer working with compartment names):
We can now add a fixed rate for all infusions that go into the central compartment:
Finally, let’s now add a constant lag time:
OK, this is how our model looks like now:
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
##
## [LAG]
## A_CENTRAL=2
##
## [RATE]
## A_CENTRAL=100
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## # A tibble: 0 × 0
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
Let’s now simulate a few individuals and show A_CENTRAL
,
i.e., the amount of drug in the central compartment.
First, we need to define an infusion of 1000
in a
Campsis dataset, as well as the observations times.
library(campsis)
dataset <- Dataset(5) %>%
add(Infusion(time=0, amount=1000)) %>%
add(Observations(seq(0,36,by=0.5)))
Then, we can run the simulation.
As previously, let’s demonstrate the use of a couple of interesting functions:
Check the existence of a compartment:
## [1] TRUE
## [1] TRUE
Check the existence of a property:
## [1] TRUE
## [1] FALSE
Find a compartment:
## A_CENTRAL (CMT=1)
Find a compartment property:
## RATE (CMT=1): 100
Replace a compartment property:
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
##
## [ODE]
## d/dt(A_CENTRAL)=-K*A_CENTRAL
##
## [LAG]
## A_CENTRAL=2
##
## [RATE]
## A_CENTRAL=200
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## # A tibble: 0 × 0
## No variance-covariance matrix
##
## Compartments:
## A_CENTRAL (CMT=1)
Interestingly, the name of a compartment can be replaced as follows:
model %>% replace(Compartment(1, name="CENT")) %>%
delete(Ode("A_CENTRAL")) %>%
add(Ode("A_CENT", "-K*A_CENT"))
## [MAIN]
## K=THETA_K*exp(ETA_K) # Elimination constant
##
## [ODE]
## d/dt(A_CENT)=-K*A_CENT
##
## [LAG]
## A_CENT=2
##
## [RATE]
## A_CENT=100
##
##
## THETA's:
## name index value fix
## 1 K 1 0.06 FALSE
## OMEGA's:
## name index index2 value fix type
## 1 K 1 1 15 FALSE cv%
## SIGMA's:
## # A tibble: 0 × 0
## No variance-covariance matrix
##
## Compartments:
## A_CENT (CMT=1)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.