The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
caRamel is a multiobjective evolutionary algorithm combining the MEAS algorithm and the NGSA-II algorithm.
Download the package from CRAN or GitHub and then install and load it.
library(caRamel)
## Loading required package: geometry
## Loading required package: parallel
## Package 'caRamel' version 1.4
Schaffer test function has two objectives with one variable.
schaffer <- function(i) {
if (x[i,1] <= 1) {
s1 <- -x[i,1]
} else if (x[i,1] <= 3) {
s1 <- x[i,1] - 2
} else if (x[i,1] <= 4) {
s1 <- 4 - x[i,1]
} else {
s1 <- x[i,1] - 4
}
s2 <- (x[i,1] - 5) * (x[i,1] - 5)
return(c(s1, s2))
}
Note that :
The variable lies in the range [-5, 10]:
nvar <- 1 # number of variables
bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds
bounds[, 1] <- -5 * bounds[, 1]
bounds[, 2] <- 10 * bounds[, 2]
Both functions are to be minimized:
nobj <- 2 # number of objectives
minmax <- c(FALSE, FALSE) # min and min
Before calling caRamel in order to optimize the Schaffer’s problem, some algorithmic parameters need to be set:
popsize <- 100 # size of the genetic population
archsize <- 100 # size of the archive for the Pareto front
maxrun <- 1000 # maximum number of calls
prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase
Then the minimization problem can be launched:
results <-
caRamel(nobj,
nvar,
minmax,
bounds,
schaffer,
popsize,
archsize,
maxrun,
prec,
carallel=FALSE) # no parallelism
## Beginning of caRamel optimization <-- Mon Jul 29 10:00:18 2024
## Number of variables : 1
## Number of functions : 2
## Done in 2.7538206577301 secs --> Mon Jul 29 10:00:21 2024
## Size of the Pareto front : 70
## Number of calls : 1020
Test if the convergence is successful:
print(results$success==TRUE)
## [1] TRUE
Plot the Pareto front:
plot(results$objectives[,1], results$objectives[,2], main="Schaffer Pareto front", xlab="Objective #1", ylab="Objective #2")
plot(results$parameters, main="Corresponding values for X", xlab="Element of the archive", ylab="X Variable")
Kursawe test function has two objectives of three variables.
kursawe <- function(i) {
k1 <- -10 * exp(-0.2 * sqrt(x[i,1] ^ 2 + x[i,2] ^ 2)) - 10 * exp(-0.2 * sqrt(x[i,2] ^2 + x[i,3] ^ 2))
k2 <- abs(x[i,1]) ^ 0.8 + 5 * sin(x[i,1] ^ 3) + abs(x[i,2]) ^ 0.8 + 5 * sin(x[i,2] ^3) + abs(x[i,3]) ^ 0.8 + 5 * sin(x[i,3] ^ 3)
return(c(k1, k2))
}
The variables lie in the range [-5, 5]:
nvar <- 3 # number of variables
bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds
bounds[, 1] <- -5 * bounds[, 1]
bounds[, 2] <- 5 * bounds[, 2]
Both functions are to be minimized:
nobj <- 2 # number of objectives
minmax <- c(FALSE, FALSE) # min and min
Set algorithmic parameters and launch caRamel:
popsize <- 100 # size of the genetic population
archsize <- 100 # size of the archive for the Pareto front
maxrun <- 1000 # maximum number of calls
prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase
results <-
caRamel(nobj,
nvar,
minmax,
bounds,
kursawe,
popsize,
archsize,
maxrun,
prec,
carallel=FALSE) # no parallelism
## Beginning of caRamel optimization <-- Mon Jul 29 10:00:23 2024
## Number of variables : 3
## Number of functions : 2
## Done in 2.14959335327148 secs --> Mon Jul 29 10:00:25 2024
## Size of the Pareto front : 63
## Number of calls : 1011
Test if the convergence is successful and plot the optimal front:
print(results$success==TRUE)
## [1] TRUE
plot(results$objectives[,1], results$objectives[,2], main="Kursawe Pareto front", xlab="Objective #1", ylab="Objective #2")
Finally plot the convergences of the objective functions:
matplot(results$save_crit[,1],cbind(results$save_crit[,2],results$save_crit[,3]),type="l",col=c("blue","red"), main="Convergence", xlab="Number of calls", ylab="Objectives values")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.