The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette provides the code to set up and estimate a Bayesian
vector error correction (BVEC) model with the bvartools
package. The presented Gibbs sampler is based on the approach of Koop et
al. (2010), who propose a prior on the cointegration space. The
estimated model has the following form
\[\Delta y_t = \Pi y_{t - 1} + \sum_{l = 1}^{p - 1} \Gamma_l \Delta y_{t - l} + C d_t + u_t,\]
where \(\Pi = \alpha \beta^{\prime}\) with cointegration rank \(r\), \(u_t \sim N(0, \Sigma)\) and \(d_t\) contains an intercept and seasonal dummies. For an introduction to vector error correction models see https://www.r-econometrics.com/timeseries/vecintro/.
To illustrate the workflow of the analysis, data set E6 from Lütkepohl (2006) is used, which contains data on German long-term interest rates and inflation from 1972Q2 to 1998Q4.
The gen_vec
function produces the data matrices
Y
, W
and X
for the BVEC
estimator, where Y
is the matrix of dependent variables,
W
is a matrix of potentially cointegrated regressors, and
X
is the matrix of non-cointegration regressors.
data <- gen_vec(e6, p = 4, r = 1,
const = "unrestricted", season = "unrestricted",
iterations = 5000, burnin = 1000)
Argument p
represents the lag order of the VAR form of
the model and r
is the cointegration rank of
Pi
. Function gen_vec
requires to specify the
inclusion of intercepts, trends and seasonal dummies separately. This
allows to decide on whether they enter the cointegration term or the
non-cointegration part of the model.
Function add_priors
adds the necessary prior
specifications to object data
. We
For the current application we use non-informative priors.
The following code produces posterior draws using the algortihm described in Koop et al. (2010).
# Reset random number generator for reproducibility
set.seed(7654321)
# Obtain data matrices
y <- t(data$data$Y)
w <- t(data$data$W)
x <- t(data$data$X)
r <- data$model$rank # Set rank
tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms
k_gamma <- k * k_x # Total number of non-cointegration coefficients
k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
# Priors
a_mu_prior <- data$priors$noncointegration$mu # Prior means
a_v_i_prior <- data$priors$noncointegration$v_i # Inverse of the prior covariance matrix
v_i <- data$priors$cointegration$v_i
p_tau_i <- data$priors$cointegration$p_tau_i
sigma_df_prior <- data$priors$sigma$df # Prior degrees of freedom
sigma_scale_prior <- data$priors$sigma$scale # Prior covariance matrix
sigma_df_post <- tt + sigma_df_prior # Posterior degrees of freedom
# Initial values
beta <- matrix(0, k_w, r)
beta[1:r, 1:r] <- diag(1, r)
sigma_i <- diag(1 / .0001, k)
g_i <- sigma_i
iterations <- data$model$iterations # Number of iterations of the Gibbs sampler
burnin <- data$model$burnin # Number of burn-in draws
draws <- iterations + burnin # Total number of draws
# Data containers
draws_alpha <- matrix(NA, k_alpha, iterations)
draws_beta <- matrix(NA, k_beta, iterations)
draws_pi <- matrix(NA, k * k_w, iterations)
draws_gamma <- matrix(NA, k_gamma, iterations)
draws_sigma <- matrix(NA, k^2, iterations)
# Start Gibbs sampler
for (draw in 1:draws) {
# Draw conditional mean parameters
temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = sigma_i,
v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
gamma_mu_prior = a_mu_prior,
gamma_v_i_prior = a_v_i_prior)
alpha <- temp$alpha
beta <- temp$beta
Pi <- temp$Pi
gamma <- temp$Gamma
# Draw variance-covariance matrix
u <- y - Pi %*% w - matrix(gamma, k) %*% x
sigma_scale_post <- solve(tcrossprod(u) + v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
sigma_i <- matrix(rWishart(1, sigma_df_post, sigma_scale_post)[,, 1], k)
sigma <- solve(sigma_i)
# Update g_i
g_i <- sigma_i
# Store draws
if (draw > burnin) {
draws_alpha[, draw - burnin] <- alpha
draws_beta[, draw - burnin] <- beta
draws_pi[, draw - burnin] <- Pi
draws_gamma[, draw - burnin] <- gamma
draws_sigma[, draw - burnin] <- sigma
}
}
Obtain point estimates of cointegration variables:
beta <- apply(t(draws_beta) / t(draws_beta)[, 1], 2, mean) # Obtain means for every row
beta <- matrix(beta, k_w) # Transform mean vector into a matrix
beta <- round(beta, 3) # Round values
dimnames(beta) <- list(dimnames(w)[[1]], NULL) # Rename matrix dimensions
beta # Print
#> [,1]
#> l.R 1.000
#> l.Dp -3.946
bvec
objectsThe bvec
function can be used to collect output of the
Gibbs sampler in a standardised object, which can be used further for
forecasting, impulse response analysis or forecast error variance
decomposition.
# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k
# Generate bvec object
bvec_est <- bvec(y = data$data$Y,
w = data$data$W,
x = data$data$X[, 1:6],
x_d = data$data$X[, -(1:6)],
Pi = draws_pi,
r = 1,
Gamma = draws_gamma[1:k_nondet,],
C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
Sigma = draws_sigma)
Posterior draws an be inspected with plot
:
Obtain summaries of posterior draws
summary(bvec_est)
#>
#> Bayesian VEC model with p = 4
#>
#> Model:
#>
#> d.y ~ l.R + l.Dp + d.R.l01 + d.Dp.l01 + d.R.l02 + d.Dp.l02 + d.R.l03 + d.Dp.l03 + const + season.1 + season.2 + season.3
#>
#> Variable: d.R
#>
#> Mean SD Naive SD Time-series SD 2.5% 50%
#> l.R -0.1058257 0.057128 8.079e-04 2.934e-03 -0.2218739 -0.104748
#> l.Dp 0.3816631 0.190012 2.687e-03 5.035e-03 -0.0008244 0.381684
#> d.R.l01 0.2686749 0.108454 1.534e-03 1.818e-03 0.0503097 0.268921
#> d.Dp.l01 -0.1902379 0.159116 2.250e-03 3.841e-03 -0.5031594 -0.193049
#> d.R.l02 -0.0166691 0.109222 1.545e-03 1.798e-03 -0.2292546 -0.016324
#> d.Dp.l02 -0.2098870 0.130365 1.844e-03 2.559e-03 -0.4693754 -0.209137
#> d.R.l03 0.2259926 0.105552 1.493e-03 1.924e-03 0.0200153 0.228738
#> d.Dp.l03 -0.1024420 0.085916 1.215e-03 1.215e-03 -0.2734722 -0.102478
#> const 0.0018718 0.004447 6.290e-05 1.847e-04 -0.0065256 0.001778
#> season.1 0.0015565 0.005165 7.304e-05 7.059e-05 -0.0082831 0.001627
#> season.2 0.0089724 0.005277 7.463e-05 7.124e-05 -0.0012790 0.008950
#> season.3 -0.0003219 0.005168 7.308e-05 7.308e-05 -0.0103220 -0.000263
#> 97.5%
#> l.R 0.0002007
#> l.Dp 0.7544752
#> d.R.l01 0.4799672
#> d.Dp.l01 0.1260587
#> d.R.l02 0.2016127
#> d.Dp.l02 0.0485518
#> d.R.l03 0.4331961
#> d.Dp.l03 0.0645323
#> const 0.0106365
#> season.1 0.0116696
#> season.2 0.0191547
#> season.3 0.0097738
#>
#> Variable: d.Dp
#>
#> Mean SD Naive SD Time-series SD 2.5% 50%
#> l.R 0.145090 0.049654 7.022e-04 1.514e-03 0.046217 0.1449742
#> l.Dp -0.556494 0.199952 2.828e-03 8.912e-03 -0.942351 -0.5581037
#> d.R.l01 0.076859 0.104437 1.477e-03 1.765e-03 -0.124850 0.0749406
#> d.Dp.l01 -0.390568 0.166755 2.358e-03 6.892e-03 -0.720068 -0.3885522
#> d.R.l02 0.001176 0.104539 1.478e-03 1.473e-03 -0.203920 0.0007347
#> d.Dp.l02 -0.423783 0.129145 1.826e-03 4.618e-03 -0.675218 -0.4239844
#> d.R.l03 0.024011 0.099281 1.404e-03 1.404e-03 -0.168761 0.0232362
#> d.Dp.l03 -0.362624 0.084262 1.192e-03 2.395e-03 -0.528992 -0.3620497
#> const 0.010553 0.004022 5.688e-05 1.308e-04 0.002849 0.0105357
#> season.1 -0.034204 0.004885 6.909e-05 6.781e-05 -0.043993 -0.0341443
#> season.2 -0.018008 0.004999 7.070e-05 7.070e-05 -0.027921 -0.0179772
#> season.3 -0.016431 0.004864 6.878e-05 6.878e-05 -0.025821 -0.0164508
#> 97.5%
#> l.R 0.242481
#> l.Dp -0.154874
#> d.R.l01 0.289202
#> d.Dp.l01 -0.062096
#> d.R.l02 0.210974
#> d.Dp.l02 -0.173093
#> d.R.l03 0.220960
#> d.Dp.l03 -0.198335
#> const 0.018401
#> season.1 -0.024807
#> season.2 -0.008508
#> season.3 -0.006929
#>
#> Variance-covariance matrix:
#>
#> Mean SD Naive SD Time-series SD 2.5% 50%
#> d.R_d.R 2.948e-05 4.562e-06 6.452e-08 7.135e-08 2.178e-05 2.905e-05
#> d.R_d.Dp -1.868e-06 3.017e-06 4.266e-08 4.780e-08 -7.811e-06 -1.856e-06
#> d.Dp_d.R -1.868e-06 3.017e-06 4.266e-08 4.780e-08 -7.811e-06 -1.856e-06
#> d.Dp_d.Dp 2.671e-05 4.065e-06 5.749e-08 7.304e-08 1.980e-05 2.640e-05
#> 97.5%
#> d.R_d.R 3.963e-05
#> d.R_d.Dp 3.891e-06
#> d.Dp_d.R 3.891e-06
#> d.Dp_d.Dp 3.572e-05
Posterior draws can be thinned with function thin
:
The function bvec_to_bvar
can be used to transform the
VEC model into a VAR in levels:
The output of bvec_to_bvar
is an object of class
bvar
for which summary statistics, forecasts, impulse
responses and variance decompositions can be obtained in the usual
manner using summary
, predict
,
irf
and fevd
, respectively.
summary(bvar_form)
#>
#> Bayesian VAR model with p = 4
#>
#> Model:
#>
#> y ~ R.l01 + Dp.l01 + R.l02 + Dp.l02 + R.l03 + Dp.l03 + R.l04 + Dp.l04 + const + season.1 + season.2 + season.3
#>
#> Variable: R
#>
#> Mean SD Naive SD Time-series SD 2.5% 50%
#> R.l01 1.1618580 0.107931 0.0034131 0.0034131 0.942884 1.165e+00
#> Dp.l01 0.1931743 0.089310 0.0028242 0.0028242 0.019021 1.917e-01
#> R.l02 -0.2822331 0.161264 0.0050996 0.0054410 -0.600631 -2.804e-01
#> Dp.l02 -0.0227417 0.085735 0.0027112 0.0027112 -0.187809 -2.309e-02
#> R.l03 0.2431203 0.156611 0.0049525 0.0049525 -0.070666 2.480e-01
#> Dp.l03 0.1052096 0.089048 0.0028159 0.0028159 -0.055730 1.042e-01
#> R.l04 -0.2276779 0.106858 0.0033792 0.0040310 -0.439024 -2.288e-01
#> Dp.l04 0.1040068 0.083735 0.0026479 0.0026479 -0.057224 1.027e-01
#> const 0.0016440 0.004341 0.0001373 0.0001813 -0.006820 1.449e-03
#> season.1 0.0017077 0.005072 0.0001604 0.0001604 -0.007675 1.595e-03
#> season.2 0.0093040 0.005296 0.0001675 0.0001460 -0.001209 9.225e-03
#> season.3 -0.0001351 0.005040 0.0001594 0.0001522 -0.010260 -9.785e-05
#> 97.5%
#> R.l01 1.373889
#> Dp.l01 0.372050
#> R.l02 0.021192
#> Dp.l02 0.145084
#> R.l03 0.545996
#> Dp.l03 0.280562
#> R.l04 -0.015193
#> Dp.l04 0.279507
#> const 0.010739
#> season.1 0.012468
#> season.2 0.019146
#> season.3 0.009544
#>
#> Variable: Dp
#>
#> Mean SD Naive SD Time-series SD 2.5% 50%
#> R.l01 0.22116 0.100069 0.0031645 0.0031645 0.027522 0.22139
#> Dp.l01 0.04984 0.089053 0.0028161 0.0027241 -0.121803 0.04897
#> R.l02 -0.07106 0.154687 0.0048916 0.0046610 -0.369066 -0.07157
#> Dp.l02 -0.03476 0.089019 0.0028150 0.0030828 -0.197268 -0.03491
#> R.l03 0.01886 0.154435 0.0048837 0.0048837 -0.298118 0.02106
#> Dp.l03 0.05868 0.088388 0.0027951 0.0033079 -0.109995 0.05923
#> R.l04 -0.02168 0.102035 0.0032266 0.0035704 -0.217541 -0.02035
#> Dp.l04 0.36242 0.084178 0.0026619 0.0032900 0.197902 0.35994
#> const 0.01042 0.004094 0.0001295 0.0001748 0.002681 0.01035
#> season.1 -0.03410 0.004928 0.0001559 0.0001559 -0.044104 -0.03407
#> season.2 -0.01801 0.004995 0.0001580 0.0001580 -0.028383 -0.01811
#> season.3 -0.01639 0.004928 0.0001558 0.0001558 -0.026135 -0.01628
#> 97.5%
#> R.l01 0.419654
#> Dp.l01 0.228124
#> R.l02 0.230664
#> Dp.l02 0.134750
#> R.l03 0.317470
#> Dp.l03 0.229644
#> R.l04 0.182453
#> Dp.l04 0.533865
#> const 0.018695
#> season.1 -0.024122
#> season.2 -0.008187
#> season.3 -0.007100
#>
#> Variance-covariance matrix:
#>
#> Mean SD Naive SD Time-series SD 2.5% 50%
#> R_R 2.931e-05 4.400e-06 1.391e-07 1.391e-07 2.190e-05 2.888e-05
#> R_Dp -1.903e-06 3.047e-06 9.634e-08 8.959e-08 -8.123e-06 -1.940e-06
#> Dp_R -1.903e-06 3.047e-06 9.634e-08 8.959e-08 -8.123e-06 -1.940e-06
#> Dp_Dp 2.682e-05 4.350e-06 1.376e-07 1.471e-07 1.985e-05 2.654e-05
#> 97.5%
#> R_R 3.858e-05
#> R_Dp 3.695e-06
#> Dp_R 3.695e-06
#> Dp_Dp 3.676e-05
Forecasts with credible bands can be obtained with the function
predict
. If the model contains deterministic terms, new
values can be provided in the argument new_d
. If no values
are provided, the function sets them to zero. For the current model,
seasonal dummies need to be provided. They are taken from the original
series. The number of rows of new_d
must be the same as the
argument n.ahead
.
Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224-242. https://doi.org/10.1080/07474930903382208
Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.
Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models, Economics Letters, 58, 17-29. https://doi.org/10.1016/S0165-1765(97)00214-0
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.