The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
bulkreadr
is an R package designed to simplify and
streamline the process of reading and processing large volumes of data.
With a collection of functions tailored for bulk data operations, the
package allows users to efficiently read multiple sheets from Microsoft
Excel/Google Sheets workbooks and multiple CSV files from a directory.
It returns the data as organized data frames, making it convenient for
further analysis and manipulation. Whether dealing with extensive data
sets or batch processing tasks, “bulkreadr” empowers users to
effortlessly handle data in bulk, saving time and effort in data
preparation workflows.
You can install bulkreadr
package from CRAN with:
or the development version from GitHub with
Now that you have installed bulkreadr
package, you can
simply load it by using:
This section provides a concise overview of the different functions
available in the bulkreadr
package for importing bulk data
in R.
For the majority of functions within this package, we will utilize data stored in the system file by the
bulkreadr
, which can be accessed using thesystem.file()
function. If you wish to utilize your own data stored in your local directory, please ensure that you have set the appropriate file path prior to using any functions provided by the bulkreadr package.
read_excel_workbook()
reads all the data from the sheets
of an Excel workbook and return an appended dataframe.
# path to the xls/xlsx file.
path <- system.file("extdata", "Diamonds.xlsx", package = "bulkreadr")
# read the sheets
read_excel_workbook(path = path)
#> # A tibble: 260 × 9
#> carat color clarity depth table price x y z
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> # ℹ 255 more rows
read_excel_files_from_dir()
reads all Excel workbooks in
the "~/data"
directory and returns an appended
dataframe.
# path to the directory containing the xls/xlsx files.
directory <- system.file("xlsxfolder", package = "bulkreadr")
# import the workbooks
read_excel_files_from_dir(dir_path = directory)
#> # A tibble: 260 × 10
#> cut carat color clarity depth table price x y z
#> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Fair 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 Fair 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 Fair 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 Fair 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 Fair 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> # ℹ 255 more rows
read_csv_files_from_dir()
reads all csv files from the
"~/data"
directory and returns an appended dataframe. The
resulting dataframe will be in the same order as the CSV files in the
directory.
# path to the directory containing the CSV files.
directory <- system.file("csvfolder", package = "bulkreadr")
# import the csv files
read_csv_files_from_dir(dir_path = directory)
#> # A tibble: 260 × 10
#> cut carat color clarity depth table price x y z
#> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Fair 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 Fair 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 Fair 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 Fair 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 Fair 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> # ℹ 255 more rows
The read_gsheets()
function imports data from multiple
sheets in a Google Sheets spreadsheet and appends the resulting
dataframes from each sheet together to create a single dataframe. This
function is a powerful tool for data analysis, as it allows you to
easily combine data from multiple sheets into a single dataset.
# Google Sheet ID or the link to the sheet
sheet_id <- "1izO0mHu3L9AMySQUXGDn9GPs1n-VwGFSEoAKGhqVQh0"
# read all the sheets
read_gsheets(ss = sheet_id)
#> # A tibble: 260 × 9
#> carat color clarity depth table price x y z
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 I SI1 65.9 60 13764 7.8 7.73 5.12
#> 2 0.7 H SI1 65.2 58 2048 5.49 5.55 3.6
#> 3 1.51 E SI1 58.4 70 11102 7.55 7.39 4.36
#> 4 0.7 D SI2 65.5 57 1806 5.56 5.43 3.6
#> 5 0.35 F VVS1 54.6 59 1011 4.85 4.79 2.63
#> # ℹ 255 more rows
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.