The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Getting Started with broom.helpers

The broom.helpers package offers a suite of functions that make easy to interact, add information, and manipulate tibbles created with broom::tidy() (and friends).

The suite includes functions to group regression model terms by variable, insert reference and header rows for categorical variables, add variable labels, and more.

As a motivating example, let’s summarize a logistic regression model with a forest plot and in a table.

To begin, let’s load our packages.

library(broom.helpers)
library(gtsummary)
library(ggplot2)
library(dplyr)

# paged_table() was introduced only in rmarkdwon v1.2
print_table <- function(tab) {
  if (packageVersion("rmarkdown") >= "1.2") {
    rmarkdown::paged_table(tab)
  } else {
    knitr::kable(tab)
  }
}

Our model predicts tumor response using chemotherapy treatment and tumor grade. The data set we’re utilizing has already labelled the columns using the labelled package. The column labels will be carried through to our figure and table.

model_logit <- glm(response ~ trt + grade, trial, family = binomial)
broom::tidy(model_logit)
#> # A tibble: 4 × 5
#>   term        estimate std.error statistic p.value
#>   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
#> 1 (Intercept)  -0.879      0.305    -2.88  0.00400
#> 2 trtDrug B     0.194      0.311     0.625 0.532  
#> 3 gradeII      -0.0647     0.381    -0.170 0.865  
#> 4 gradeIII      0.0822     0.376     0.219 0.827

Forest Plot

To create the figure, we’ll need to add some information to the tidy tibble, i.e. we’ll need to group the terms that belong to the same variable, add the reference row, etc. Parsing this information can be difficult, but the broom.helper package has made it simple.

tidy_forest <-
  model_logit |>
  # perform initial tidying of the model
  tidy_and_attach(exponentiate = TRUE, conf.int = TRUE) |>
  # adding in the reference row for categorical variables
  tidy_add_reference_rows() |>
  # adding a reference value to appear in plot
  tidy_add_estimate_to_reference_rows() |>
  # adding the variable labels
  tidy_add_term_labels() |>
  # removing intercept estimate from model
  tidy_remove_intercept()
tidy_forest
#> # A tibble: 5 × 16
#>   term      variable var_label          var_class var_type var_nlevels contrasts
#>   <chr>     <chr>    <chr>              <chr>     <chr>          <int> <chr>    
#> 1 trtDrug A trt      Chemotherapy Trea… character dichoto…           2 contr.tr…
#> 2 trtDrug B trt      Chemotherapy Trea… character dichoto…           2 contr.tr…
#> 3 gradeI    grade    Grade              factor    categor…           3 contr.tr…
#> 4 gradeII   grade    Grade              factor    categor…           3 contr.tr…
#> 5 gradeIII  grade    Grade              factor    categor…           3 contr.tr…
#> # ℹ 9 more variables: contrasts_type <chr>, reference_row <lgl>, label <chr>,
#> #   estimate <dbl>, std.error <dbl>, statistic <dbl>, p.value <dbl>,
#> #   conf.low <dbl>, conf.high <dbl>

Note: we used tidy_and_attach() instead of broom::tidy(). broom.helpers functions needs a copy of the original model. To avoid passing the model at each step, the easier way is to attach the model as an attribute of the tibble with tidy_attach_model(). tidy_and_attach() is simply a shortcut of model |> broom::tidy() |> tidy_and_attach(model).

We now have a tibble with every piece of information we need to create our forest plot using ggplot2.

tidy_forest |>
  mutate(
    plot_label = paste(var_label, label, sep = ":") |>
      forcats::fct_inorder() |>
      forcats::fct_rev()
  ) |>
  ggplot(aes(x = plot_label, y = estimate, ymin = conf.low, ymax = conf.high, color = variable)) +
  geom_hline(yintercept = 1, linetype = 2) +
  geom_pointrange() +
  coord_flip() +
  theme(legend.position = "none") +
  labs(
    y = "Odds Ratio",
    x = " ",
    title = "Forest Plot using broom.helpers"
  )

Note:: for more advanced and nicely formatted plots of model coefficients, look at ggstats::ggcoef_model() and its dedicated vignette. ggstats::ggcoef_model() internally uses broom.helpers.

Table Summary

In addition to aiding in figure creation, the broom.helpers package can help summarize a model in a table. In the example below, we add header and reference rows, and utilize existing variable labels. Let’s change the labels shown in our summary table as well.

tidy_table <-
  model_logit |>
  # perform initial tidying of the model
  tidy_and_attach(exponentiate = TRUE, conf.int = TRUE) |>
  # adding in the reference row for categorical variables
  tidy_add_reference_rows() |>
  # adding the variable labels
  tidy_add_term_labels() |>
  # add header row
  tidy_add_header_rows() |>
  # removing intercept estimate from model
  tidy_remove_intercept()

# print summary table
options(knitr.kable.NA = "")
tidy_table |>
  # format model estimates
  select(label, estimate, conf.low, conf.high, p.value) |>
  mutate(across(all_of(c("estimate", "conf.low", "conf.high")), style_ratio)) |>
  mutate(across(p.value, style_pvalue)) |>
  print_table()

Note:: for more advanced and nicely formatted tables of model coefficients, look at gtsummary::tbl_regression() and its dedicated vignette. gtsummary::tbl_regression() internally uses broom.helpers.

All-in-one function

There is also a handy wrapper, called tidy_plus_plus(), for the most commonly used tidy_*() functions, and they can be executed with a single line of code:

model_logit |>
  tidy_plus_plus(exponentiate = TRUE)
#> # A tibble: 5 × 18
#>   term      variable var_label          var_class var_type var_nlevels contrasts
#>   <chr>     <chr>    <chr>              <chr>     <chr>          <int> <chr>    
#> 1 trtDrug A trt      Chemotherapy Trea… character dichoto…           2 contr.tr…
#> 2 trtDrug B trt      Chemotherapy Trea… character dichoto…           2 contr.tr…
#> 3 gradeI    grade    Grade              factor    categor…           3 contr.tr…
#> 4 gradeII   grade    Grade              factor    categor…           3 contr.tr…
#> 5 gradeIII  grade    Grade              factor    categor…           3 contr.tr…
#> # ℹ 11 more variables: contrasts_type <chr>, reference_row <lgl>, label <chr>,
#> #   n_obs <dbl>, n_event <dbl>, estimate <dbl>, std.error <dbl>,
#> #   statistic <dbl>, p.value <dbl>, conf.low <dbl>, conf.high <dbl>
model_logit |>
  tidy_plus_plus(exponentiate = TRUE) |>
  print_table()

See the documentation of tidy_plus_plus() for the full list of available options.

Advanced examples

broom.helpers can also handle different contrasts for categorical variables and the use of polynomial terms for continuous variables.

Polynomial terms

When polynomial terms of a continuous variable are defined with stats::poly(), broom.helpers will be able to identify the corresponding variable, create appropriate labels and add header rows.

model_poly <- glm(response ~ poly(age, 3) + ttdeath, na.omit(trial), family = binomial)

model_poly |>
  tidy_plus_plus(
    exponentiate = TRUE,
    add_header_rows = TRUE,
    variable_labels = c(age = "Age in years")
  ) |>
  print_table()

Different type of contrasts

By default, categorical variables are coded with a treatment contrasts (see stats::contr.treatment()). With such contrasts, model coefficients correspond to the effect of a modality compared with the reference modality (by default, the first one). tidy_add_reference_rows() allows to add a row for this reference modality and tidy_add_estimate_to_reference_rows() will populate the estimate value of these references rows by 0 (or 1 if exponentiate = TRUE). tidy_add_term_labels() is able to retrieve the label of the factor level associated with a specific model term.

model_1 <- glm(
  response ~ stage + grade * trt,
  gtsummary::trial,
  family = binomial
)

model_1 |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_reference_rows() |>
  tidy_add_estimate_to_reference_rows(exponentiate = TRUE) |>
  tidy_add_term_labels() |>
  print_table()

Using stats::contr.treatment(), it is possible to defined alternative reference rows. It will be properly managed by broom.helpers.

model_2 <- glm(
  response ~ stage + grade * trt,
  gtsummary::trial,
  family = binomial,
  contrasts = list(
    stage = contr.treatment(4, base = 3),
    grade = contr.treatment(3, base = 2),
    trt = contr.treatment(2, base = 2)
  )
)

model_2 |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_reference_rows() |>
  tidy_add_estimate_to_reference_rows(exponentiate = TRUE) |>
  tidy_add_term_labels() |>
  print_table()

You can also use sum contrasts (cf. stats::contr.sum()). In that case, each model coefficient corresponds to the difference of that modality with the grand mean. A variable with 4 modalities will be coded with 3 terms. However, a value could be computed (using emmeans::emmeans()) for the last modality, corresponding to the difference of that modality with the grand mean and equal to sum of all other coefficients multiplied by -1. broom.helpers will identify categorical variables coded with sum contrasts and could retrieve an estimate value for the reference term.

model_3 <- glm(
  response ~ stage + grade * trt,
  gtsummary::trial,
  family = binomial,
  contrasts = list(
    stage = contr.sum,
    grade = contr.sum,
    trt = contr.sum
  )
)

model_3 |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_reference_rows() |>
  tidy_add_estimate_to_reference_rows(exponentiate = TRUE) |>
  tidy_add_term_labels() |>
  print_table()

Other types of contrasts exist, like Helmert (contr.helmert()) or polynomial (contr.poly()). They are more complex as a modality will be coded with a combination of terms. Therefore, for such contrasts, it will not be possible to associate a specific model term with a level of the original factor. broom.helpers will not add a reference term in such case.

model_4 <- glm(
  response ~ stage + grade * trt,
  gtsummary::trial,
  family = binomial,
  contrasts = list(
    stage = contr.poly,
    grade = contr.helmert,
    trt = contr.poly
  )
)

model_4 |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_reference_rows() |>
  tidy_add_estimate_to_reference_rows(exponentiate = TRUE) |>
  tidy_add_term_labels() |>
  print_table()

Pairwise contrasts of categorical variable

Pairwise contrasts of categorical variables could be computed with tidy_add_pairwise_contrasts().

model_logit <- glm(response ~ age + trt + grade, trial, family = binomial)

model_logit |>
  tidy_and_attach() |>
  tidy_add_pairwise_contrasts() |>
  print_table()

model_logit |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_pairwise_contrasts() |>
  print_table()

model_logit |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_pairwise_contrasts(pairwise_reverse = FALSE) |>
  print_table()

model_logit |>
  tidy_and_attach(exponentiate = TRUE) |>
  tidy_add_pairwise_contrasts(keep_model_terms = TRUE) |>
  print_table()

Column Details

Below is a summary of the additional columns that may be added by a broom.helpers function. The table includes the column name, the function that adds the column, and a short description of the information in the column.

Column Function Description
original_term tidy_disambiguate_terms(), tidy_multgee() or tidy_zeroinfl() Original term before disambiguation. This columns is added only when disambiguation is needed (i.e. for mixed models). Also used for “multgee”, “zeroinfl” and “hurdle” models.
variable tidy_identify_variables() String of variable names from the model. For categorical variables and polynomial terms defined with stats::poly(), terms belonging to the variable are identified.
var_class tidy_identify_variables() Class of the variable.
var_type tidy_identify_variables() One of “intercept”, “continuous”, “dichotomous”, “categorical”, “interaction”, “ran_pars” or “ran_vals”
var_nlevels tidy_identify_variables() Number of original levels for categorical variables
contrasts tidy_add_contrasts() Contrasts used for categorical variables.
Require “variable” column. If needed, will automatically apply tidy_identify_variables().
contrasts_type tidy_add_contrasts() Type of contrasts (“treatment”, “sum”, “poly”, “helmert”, “sdif”, “other” or “no.contrast”). “pairwise is used for pairwise contrasts computed with tidy_add_pairwise_contrasts().
reference_row tidy_add_reference_rows() Logical indicating if a row is a reference row for categorical variables using a treatment or a sum contrast. Is equal to NA for variables who do not have a reference row.
Require “contrasts” column. If needed, will automatically apply tidy_add_contrasts().
tidy_add_reference_rows() will not populate the label of the reference term. It is therefore better to apply tidy_add_term_labels() after tidy_add_reference_rows() rather than before.
var_label tidy_add_variable_labels() String of variable labels from the model. Columns labelled with the labelled package are retained. It is possible to pass a custom label for an interaction term with the labels argument.
Require “variable” column. If needed, will automatically apply tidy_identify_variables().
label tidy_add_term_labels() String of term labels based on (1) labels provided in labels argument if provided; (2) factor levels for categorical variables coded with treatment, SAS or sum contrasts; (3) variable labels when there is only one term per variable; and (4) term name otherwise.
Require “variable_label” column. If needed, will automatically apply tidy_add_variable_labels().
Require “contrasts” column. If needed, will automatically apply tidy_add_contrasts().
header_row tidy_add_header_rows() Logical indicating if a row is a header row for variables with several terms. Is equal to NA for variables who do not have an header row.
Require “label” column. If needed, will automatically apply tidy_add_term_labels().
It is better to apply tidy_add_header_rows() after other tidy_* functions
n_obs tidy_add_n() Number of observations
n_ind tidy_add_n() Number of individuals (for Cox models)
n_event tidy_add_n() Number of events (for binomial and multinomial logistic models, Poisson and Cox models)
exposure tidy_add_n() Exposure time (for Poisson and Cox models)

Note: tidy_add_estimate_to_reference_rows() does not create an additional column; rather, it populates the ‘estimate’ column for reference rows.

Additional attributes

Below is a list of additional attributes that broom.helpers may attached to the results. The table includes the attribute name, the function that adds the attribute, and a short description.

Attribute Function Description
exponentiate tidy_and_attach() Indicates if estimates were exponentiated
conf.level tidy_and_attach() Level of confidence used for confidence intervals
coefficients_type tidy_add_coefficients_type() Type of coefficients
coefficients_label tidy_add_coefficients_type() Coefficients label
variable_labels tidy_add_variable_labels() Custom variable labels passed to tidy_add_variable_labels()
term_labels tidy_add_term_labels() Custom term labels passed to tidy_add_term_labels()
N_obs tidy_add_n() Total number of observations
N_event tidy_add_n() Total number of events
N_ind tidy_add_n() Total number of individuals (for Cox models)
Exposure tidy_add_n() Total of exposure time
component tidy_zeroinfl() component argument passed to tidy_zeroinfl()

Supported models

Model Notes
betareg::betareg() Use tidy_parameters() as tidy_fun with component argument to control with coefficients to return. broom::tidy() does not support the exponentiate argument for betareg models, use tidy_parameters() instead.
biglm::bigglm()
brms::brm() broom.mixed package required
cmprsk::crr() Limited support. It is recommended to use tidycmprsk::crr() instead.
fixest::feglm() May fail with R <= 4.0.
fixest::femlm() May fail with R <= 4.0.
fixest::feNmlm() May fail with R <= 4.0.
fixest::feols() May fail with R <= 4.0.
gam::gam()
geepack::geeglm()
glmmTMB::glmmTMB() broom.mixed package required
lavaan::lavaan() Limited support for categorical variables
lfe::felm()
lme4::glmer.nb() broom.mixed package required
lme4::glmer() broom.mixed package required
lme4::lmer() broom.mixed package required
logitr::logitr() Requires logitr >= 0.8.0
MASS::glm.nb()
MASS::polr()
mgcv::gam() Use default tidier broom::tidy() for smooth terms only, or gtsummary::tidy_gam() to include parametric terms
mice::mira Limited support. If mod is a mira object, use tidy_fun = function(x, ...) {mice::pool(x) %>% mice::tidy(...)}
mmrm::mmrm()
multgee::nomLORgee() Experimental support. Use tidy_multgee() as tidy_fun.
multgee::ordLORgee() Experimental support. Use tidy_multgee() as tidy_fun.
nnet::multinom()
ordinal::clm() Limited support for models with nominal predictors.
ordinal::clmm() Limited support for models with nominal predictors.
parsnip::model_fit Supported as long as the type of model and the engine is supported.
plm::plm()
pscl::hurdle() Use tidy_zeroinfl() as tidy_fun.
pscl::zeroinfl() Use tidy_zeroinfl() as tidy_fun.
rstanarm::stan_glm() broom.mixed package required
stats::aov() Reference rows are not relevant for such models.
stats::glm()
stats::lm()
stats::nls() Limited support
survey::svycoxph()
survey::svyglm()
survey::svyolr()
survival::cch() `Experimental support.
survival::clogit()
survival::coxph()
survival::survreg()
tidycmprsk::crr()
VGAM::vglm() Limited support. It is recommended to use tidy_parameters() as tidy_fun.

Note: this list of models has been tested. broom.helpers may or may not work properly or partially with other types of models. Do not hesitate to provide feedback on GitHub.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.