The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

brolgar: Browse Over Longitudinal Data Graphically and Analytically in R

Provides a framework of tools to summarise, visualise, and explore longitudinal data. It builds upon the tidy time series data frames used in the 'tsibble' package, and is designed to integrate within the 'tidyverse', and 'tidyverts' (for time series) ecosystems. The methods implemented include calculating features for understanding longitudinal data, including calculating summary statistics such as quantiles, medians, and numeric ranges, sampling individual series, identifying individual series representative of a group, and extending the facet system in 'ggplot2' to facilitate exploration of samples of data. These methods are fully described in the paper "brolgar: An R package to Browse Over Longitudinal Data Graphically and Analytically in R", Nicholas Tierney, Dianne Cook, Tania Prvan (2020) <doi:10.32614/RJ-2022-023>.

Version: 1.0.1
Depends: R (≥ 3.5.0)
Imports: dplyr (≥ 0.8.3), fabletools, ggplot2 (≥ 3.2.0), glue (≥ 1.3.1), magrittr (≥ 1.5), purrr (≥ 0.3.2), rlang (≥ 0.4.0), stats, tibble (≥ 2.1.3), tidyr (≥ 0.8.3), tsibble (≥ 0.8.2), vctrs
Suggests: gapminder, gghighlight (≥ 0.1.0), knitr (≥ 1.23), Matrix (≥ 1.6-5), lme4, modelr, rmarkdown (≥ 1.14), spelling (≥ 2.1), testthat (≥ 3.0.0), tsibbledata, vdiffr (≥ 0.3.1)
Published: 2024-05-10
DOI: 10.32614/CRAN.package.brolgar
Author: Nicholas Tierney ORCID iD [aut, cre], Di Cook ORCID iD [aut], Tania Prvan [aut], Stuart Lee [ctb], Earo Wang [ctb]
Maintainer: Nicholas Tierney <nicholas.tierney at gmail.com>
BugReports: https://github.com/njtierney/brolgar/issues
License: MIT + file LICENSE
URL: https://github.com/njtierney/brolgar, https://brolgar.njtierney.com/
NeedsCompilation: no
Language: en-US
Citation: brolgar citation info
Materials: README NEWS
CRAN checks: brolgar results

Documentation:

Reference manual: brolgar.pdf
Vignettes: Exploratory Modelling
Finding Features in Data
Getting Started
Identify Interesting Observations
Longitudinal Data Structures
Using brolgar to understand Mixed Effects Models
Visualisation Gallery

Downloads:

Package source: brolgar_1.0.1.tar.gz
Windows binaries: r-devel: brolgar_1.0.1.zip, r-release: brolgar_1.0.1.zip, r-oldrel: brolgar_1.0.1.zip
macOS binaries: r-release (arm64): brolgar_1.0.1.tgz, r-oldrel (arm64): brolgar_1.0.1.tgz, r-release (x86_64): brolgar_1.0.1.tgz, r-oldrel (x86_64): brolgar_1.0.1.tgz
Old sources: brolgar archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=brolgar to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.