The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Here we will use the wine quality data
(archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv)
to present the breakDown package for lm
models.
library("breakDown")
head(wine, 3)
#> fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
#> 1 7.0 0.27 0.36 20.7 0.045
#> 2 6.3 0.30 0.34 1.6 0.049
#> 3 8.1 0.28 0.40 6.9 0.050
#> free.sulfur.dioxide total.sulfur.dioxide density pH sulphates alcohol
#> 1 45 170 1.0010 3.00 0.45 8.8
#> 2 14 132 0.9940 3.30 0.49 9.5
#> 3 30 97 0.9951 3.26 0.44 10.1
#> quality
#> 1 6
#> 2 6
#> 3 6
Now let’s create a liner model for quality
.
model <- lm(quality ~ fixed.acidity + volatile.acidity + citric.acid + residual.sugar + chlorides + free.sulfur.dioxide + total.sulfur.dioxide + density + pH + sulphates + alcohol,
data = wine)
The common goodness-of-fit parameteres for lm model are R^2, adjusted R^2, AIC or BIC coefficients.
summary(model)$r.squared
#> [1] 0.2818704
summary(model)$adj.r.squared
#> [1] 0.2802536
BIC(model)
#> [1] 11197.94
They assess the overall quality of fit. But how to understand the factors that drive predictions for a single observation?
With the breakDown
package!
library(breakDown)
library(ggplot2)
new_observation <- wine[1,]
br <- broken(model, new_observation)
br
#> contribution
#> (Intercept) 5.878
#> residual.sugar = 20.7 1.166
#> density = 1.001 -1.048
#> alcohol = 8.8 -0.332
#> pH = 3 -0.129
#> free.sulfur.dioxide = 45 0.036
#> sulphates = 0.45 -0.025
#> volatile.acidity = 0.27 0.015
#> fixed.acidity = 7 0.010
#> total.sulfur.dioxide = 170 -0.009
#> citric.acid = 0.36 0.001
#> chlorides = 0.045 0.000
#> final_prognosis 5.563
#> baseline: 0
# different roundings
print(br, digits = 2, rounding_function = signif)
#> contribution
#> (Intercept) 5.90000
#> residual.sugar = 20.7 1.20000
#> density = 1.001 -1.00000
#> alcohol = 8.8 -0.33000
#> pH = 3 -0.13000
#> free.sulfur.dioxide = 45 0.03600
#> sulphates = 0.45 -0.02500
#> volatile.acidity = 0.27 0.01500
#> fixed.acidity = 7 0.00950
#> total.sulfur.dioxide = 170 -0.00900
#> citric.acid = 0.36 0.00057
#> chlorides = 0.045 0.00019
#> final_prognosis 5.60000
#> baseline: 0
print(br, digits = 6, rounding_function = round)
#> contribution
#> (Intercept) 5.877909
#> residual.sugar = 20.7 1.165904
#> density = 1.001 -1.047875
#> alcohol = 8.8 -0.331669
#> pH = 3 -0.129216
#> free.sulfur.dioxide = 45 0.036178
#> sulphates = 0.45 -0.025162
#> volatile.acidity = 0.27 0.015355
#> fixed.acidity = 7 0.009514
#> total.sulfur.dioxide = 170 -0.009041
#> citric.acid = 0.36 0.000570
#> chlorides = 0.045 0.000191
#> final_prognosis 5.562658
#> baseline: 0
plot(br) + ggtitle("breakDown plot for predicted quality of a wine")
Use the baseline
argument to set the origin of
plots.
br <- broken(model, new_observation, baseline = "Intercept")
br
#> contribution
#> residual.sugar = 20.7 1.166
#> density = 1.001 -1.048
#> alcohol = 8.8 -0.332
#> pH = 3 -0.129
#> free.sulfur.dioxide = 45 0.036
#> sulphates = 0.45 -0.025
#> volatile.acidity = 0.27 0.015
#> fixed.acidity = 7 0.010
#> total.sulfur.dioxide = 170 -0.009
#> citric.acid = 0.36 0.001
#> chlorides = 0.045 0.000
#> final_prognosis -0.315
#> baseline: 5.877909
plot(br) + ggtitle("breakDown plot for predicted quality of a wine")
Works for interactions as well
model <- lm(quality ~ (alcohol + density + residual.sugar)^2,
data = wine)
new_observation <- wine[1,]
br <- broken(model, new_observation, baseline = "Intercept")
br
#> contribution
#> alcohol = 8.8 -5.546
#> density:residual.sugar = 1.001:20.7 5.422
#> alcohol:density = 8.8:1.001 4.882
#> residual.sugar = 20.7 -3.791
#> alcohol:residual.sugar = 8.8:20.7 -0.705
#> density = 1.001 -0.401
#> final_prognosis -0.139
#> baseline: 5.877909
plot(br) + ggtitle("breakDown plot for predicted quality of a wine")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.