The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of bpnreg is to fit Bayesian projected normal regression models for circular data.
The R-package bpnreg can be installed from CRAN as follows:
You can install a beta-version of bpnreg from github with:
To cite the package ‘bpnreg’ in publications use:
Jolien Cremers (2021). bpnreg: Bayesian Projected Normal Regression Models for Circular Data. R package version 2.0.2. https://CRAN.R-project.org/package=bpnreg
This is a basic example which shows you how to run a Bayesian projected normal regression model:
library(bpnreg)
bpnr(Phaserad ~ Cond + AvAmp, Motor, its = 100)
#> Iteration:1
#> Iteration:2
#> Iteration:3
#> Iteration:4
#> Iteration:5
#> Iteration:6
#> Iteration:7
#> Iteration:8
#> Iteration:9
#> Iteration:10
#> Iteration:11
#> Iteration:12
#> Iteration:13
#> Iteration:14
#> Iteration:15
#> Iteration:16
#> Iteration:17
#> Iteration:18
#> Iteration:19
#> Iteration:20
#> Iteration:21
#> Iteration:22
#> Iteration:23
#> Iteration:24
#> Iteration:25
#> Iteration:26
#> Iteration:27
#> Iteration:28
#> Iteration:29
#> Iteration:30
#> Iteration:31
#> Iteration:32
#> Iteration:33
#> Iteration:34
#> Iteration:35
#> Iteration:36
#> Iteration:37
#> Iteration:38
#> Iteration:39
#> Iteration:40
#> Iteration:41
#> Iteration:42
#> Iteration:43
#> Iteration:44
#> Iteration:45
#> Iteration:46
#> Iteration:47
#> Iteration:48
#> Iteration:49
#> Iteration:50
#> Iteration:51
#> Iteration:52
#> Iteration:53
#> Iteration:54
#> Iteration:55
#> Iteration:56
#> Iteration:57
#> Iteration:58
#> Iteration:59
#> Iteration:60
#> Iteration:61
#> Iteration:62
#> Iteration:63
#> Iteration:64
#> Iteration:65
#> Iteration:66
#> Iteration:67
#> Iteration:68
#> Iteration:69
#> Iteration:70
#> Iteration:71
#> Iteration:72
#> Iteration:73
#> Iteration:74
#> Iteration:75
#> Iteration:76
#> Iteration:77
#> Iteration:78
#> Iteration:79
#> Iteration:80
#> Iteration:81
#> Iteration:82
#> Iteration:83
#> Iteration:84
#> Iteration:85
#> Iteration:86
#> Iteration:87
#> Iteration:88
#> Iteration:89
#> Iteration:90
#> Iteration:91
#> Iteration:92
#> Iteration:93
#> Iteration:94
#> Iteration:95
#> Iteration:96
#> Iteration:97
#> Iteration:98
#> Iteration:99
#> Iteration:100
#> Projected Normal Regression
#>
#> Model
#>
#> Call:
#> bpnr(pred.I = Phaserad ~ Cond + AvAmp, data = Motor, its = 100)
#>
#> MCMC:
#> iterations = 100
#> burn-in = 1
#> lag = 1
#>
#> Model Fit:
#> Statistic Parameters
#> lppd -57.22945 8.000000
#> DIC 127.66465 6.768024
#> DIC.alt 124.17298 5.022188
#> WAIC1 127.33436 6.437733
#> WAIC2 128.65389 7.097498
#>
#>
#> Linear Coefficients
#>
#> Component I:
#> mean mode sd LB HPD UB HPD
#> (Intercept) 1.319611894 1.39128370 0.45635201 0.33485506 2.03794238
#> Condsemi.imp -0.522451171 -0.47667290 0.57057933 -1.55833243 0.50939839
#> Condimp -0.650053029 -0.99688228 0.64741848 -2.00362696 0.53197461
#> AvAmp -0.009320081 -0.01808984 0.01296947 -0.03096035 0.01524266
#>
#> Component II:
#> mean mode sd LB HPD UB HPD
#> (Intercept) 1.37081341 1.057909990 0.43448499 0.5256653 2.265534446
#> Condsemi.imp -1.13529041 -1.508829276 0.60583443 -2.2586284 0.029840305
#> Condimp -0.93550260 -1.263941265 0.62075876 -2.3158274 -0.009041090
#> AvAmp -0.01016616 -0.003931414 0.01062028 -0.0285245 0.008526117
#>
#>
#> Circular Coefficients
#>
#> Continuous variables:
#> mean ax mode ax sd ax LB ax UB ax
#> 116.31973 76.25854 562.60196 -154.19115 219.74298
#>
#> mean ac mode ac sd ac LB ac UB ac
#> 1.0746179 2.2543777 1.1994513 -0.8224601 2.4169745
#>
#> mean bc mode bc sd bc LB bc UB bc
#> -0.034814814 -0.006854753 0.499046459 -0.767238134 0.666230333
#>
#> mean AS mode AS sd AS LB AS UB AS
#> 4.875002e-04 6.466495e-05 5.442953e-03 -1.160784e-02 2.842468e-03
#>
#> mean SAM mode SAM sd SAM LB SAM UB SAM
#> 1.437848e-03 1.305745e-04 1.940441e-02 3.180594e-08 3.466995e-03
#>
#> mean SSDO mode SSDO sd SSDO LB SSSO UB SSDO
#> -0.05101017 1.88339563 1.99577431 -2.77725635 2.64369230
#>
#> Categorical variables:
#>
#> Means:
#> mean mode sd LB UB
#> (Intercept) 0.8119255 0.8675846 0.1957991 0.4326112 1.2082844
#> Condsemi.imp 0.2962062 0.3373583 0.3399843 -0.4996824 0.8360214
#> Condimp 0.5851581 0.4454521 0.4819606 -0.4032866 1.4047517
#> Condsemi.impCondimp -1.3273542 -2.0443304 1.1135480 -2.8870086 1.4407720
#>
#> Differences:
#> mean mode sd LB UB
#> Condsemi.imp 0.5152442 0.4826193 0.4033441 -0.2197928 1.286760
#> Condimp 0.2261741 0.3480214 0.5484078 -0.8033373 1.395936
#> Condsemi.impCondimp 2.2043432 2.8593855 1.0362019 -0.4035095 3.855837
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.