The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
boot.pval
packagep-values can be computed by inverting the corresponding confidence intervals, as described in Section 14.2 of Thulin (2024) and Section 3.12 in Hall (1992). This package contains functions for computing bootstrap p-values in this way. The approach relies on the fact that:
Summary tables with confidence intervals and p-values for the
coefficients of regression models can be obtained using the
boot_summary
(most models) and
censboot_summary
(models with censored response variables)
functions. Currently, the following models are supported:
lm
,glm
or
glm.nb
,nls
,MASS::rlm
,MASS:polr
,lme4::lmer
or
lmerTest::lmer
,lme4::glmer
.survival::coxph
(using censboot_summary
).survival::survreg
or rms::psm
(using
censboot_summary
).residuals(object, type="pearson")
returns Pearson
residuals; fitted(object)
returns fitted values;
hatvalues(object)
returns the leverages, or perhaps the
value 1 which will effectively ignore setting the hatvalues. In
addition, the data
argument should contain no missing
values among the columns actually used in fitting the model.A number of examples are available in Chapters 8 and 9 of Modern Statistics with R.
Here are some simple examples with a linear regression model for the
mtcars
data:
# Bootstrap summary of a linear model for mtcars:
model <- lm(mpg ~ hp + vs, data = mtcars)
boot_summary(model)
#> Estimate Lower.bound Upper.bound p.value
#> (Intercept) 26.96300111 21.33457536 32.74542669 <0.001
#> hp -0.05453412 -0.08314687 -0.02580722 <0.001
#> vs 2.57622314 -1.35314501 6.37510000 0.188
# Use 9999 bootstrap replicates and adjust p-values for
# multiplicity using Holm's method:
boot_summary(model, R = 9999, adjust.method = "holm")
#> Estimate Lower.bound Upper.bound p.value Adjusted p-value
#> (Intercept) 26.96300111 21.37809728 32.7889221 <1e-04 0.0003
#> hp -0.05453412 -0.08335973 -0.0253564 5e-04 0.0010
#> vs 2.57622314 -1.37357379 6.4663444 0.2023 0.2023
Estimate | 95 % CI | p-value | |
---|---|---|---|
(Intercept) | 26.963 | (21.324, 32.589) | <1e-04 |
hp | −0.055 | (−0.082, −0.026) | 4e-04 |
vs | 2.576 | (−1.278, 6.435) | 0.1956 |
# Export results to a Word document:
library(flextable)
boot_summary(model, R = 9999) |>
summary_to_flextable() |>
save_as_docx(path = "my_table.docx")
And a toy example for a generalised linear mixed model (using a small number of bootstrap repetitions):
For complex models, speed can be greatly improved by using
parallelisation. This is set using the parallel
(available
options are "multicore"
and "snow"
). The
number of CPUs to use is set using ncpus
.
Survival regression models should be fitted using the argument
model = TRUE
. A summary table can then be obtained using
censboot_summary
. By default, the table contains
exponentiated coefficients (i.e. hazard ratios, in the case of a Cox PH
model).
library(survival)
# Weibull AFT model:
model <- survreg(formula = Surv(time, status) ~ age + sex, data = lung,
dist = "weibull", model = TRUE)
# Table with exponentiated coefficients:
censboot_summary(model)
#> Using exponentiated coefficients.
#> Estimate Lower.bound Upper.bound p.value
#> (Intercept) 531.0483429 212.9814729 1385.668622 <0.001
#> age 0.9878178 0.9730581 1.001211 0.081
#> sex 1.4653368 1.1830736 1.892506 <0.001
# Cox PH model:
model <- coxph(formula = Surv(time, status) ~ age + sex, data = lung,
model = TRUE)
# Table with hazard ratios:
censboot_summary(model)
#> Using exponentiated coefficients.
#> Estimate Lower.bound Upper.bound p.value
#> age 1.017191 0.9991815 1.0384897 0.062
#> sex 0.598566 0.4253779 0.8060072 <0.001
Bootstrap p-values for hypothesis tests based on boot
objects can be obtained using the boot.pval
function. The
following examples are extensions of those given in the documentation
for boot::boot
:
# Hypothesis test for the city data
# H0: ratio = 1.4
library(boot)
ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)
city.boot <- boot(city, ratio, R = 999, stype = "w", sim = "ordinary")
boot.pval(city.boot, theta_null = 1.4)
#> [1] 0.4544545
# Studentized test for the two sample difference of means problem
# using the final two series of the gravity data.
diff.means <- function(d, f)
{
n <- nrow(d)
gp1 <- 1:table(as.numeric(d$series))[1]
m1 <- sum(d[gp1,1] * f[gp1])/sum(f[gp1])
m2 <- sum(d[-gp1,1] * f[-gp1])/sum(f[-gp1])
ss1 <- sum(d[gp1,1]^2 * f[gp1]) - (m1 * m1 * sum(f[gp1]))
ss2 <- sum(d[-gp1,1]^2 * f[-gp1]) - (m2 * m2 * sum(f[-gp1]))
c(m1 - m2, (ss1 + ss2)/(sum(f) - 2))
}
grav1 <- gravity[as.numeric(gravity[,2]) >= 7, ]
grav1.boot <- boot(grav1, diff.means, R = 999, stype = "f",
strata = grav1[ ,2])
boot.pval(grav1.boot, type = "stud", theta_null = 0)
#> [1] 0.05005005
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.