The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Boost Math - Statistics

Statistics

The Statistics section of the Boost Math library cover a broad range of areas

Univariate Statistics

# Mean
mean_boost(c(1, 2, 3, 4, 5))
#> [1] 3
# Variance
variance(c(1, 2, 3, 4, 5))
#> [1] 2
# Sample Variance
sample_variance(c(1, 2, 3, 4, 5))
#> [1] 2.5
# Mean and Sample Variance
mean_and_sample_variance(c(1, 2, 3, 4, 5))
#> [1] 3.0 2.5
# Skewness
skewness(c(1, 2, 3, 4, 5))
#> [1] 0
# Kurtosis
kurtosis(c(1, 2, 3, 4, 5))
#> [1] 1.7
# Excess Kurtosis
excess_kurtosis(c(1, 2, 3, 4, 5))
#> [1] -1.3
# First Four Moments
first_four_moments(c(1, 2, 3, 4, 5))
#> [1] 3.0 2.0 0.0 6.8
# Median
median_boost(c(1, 2, 3, 4, 5))
#> [1] 3
# Median Absolute Deviation
median_absolute_deviation(c(1, 2, 3, 4, 5))
#> [1] 1
# Interquartile Range
interquartile_range(c(1, 2, 3, 4, 5))
#> [1] 3
# Gini Coefficient
gini_coefficient(c(1, 2, 3, 4, 5))
#> [1] 0.2666667
# Sample Gini Coefficient
sample_gini_coefficient(c(1, 2, 3, 4, 5))
#> [1] 0.3333333
# Mode
mode_boost(c(1, 2, 2, 3, 4))
#> [1] 2

Bivariate Statistics

# Covariance
covariance(c(1, 2, 3), c(4, 5, 6))
#> [1] 0.6666667
# Means and Covariance
means_and_covariance(c(1, 2, 3), c(4, 5, 6))
#> [1] 2.0000000 5.0000000 0.6666667
# Correlation Coefficient
correlation_coefficient(c(1, 2, 3), c(4, 5, 6))
#> [1] 1

Signal Statistics

# Absolute Gini Coefficient
absolute_gini_coefficient(c(1, 2, 3, 4, 5))
#> [1] 0.2666667
# Sample Absolute Gini Coefficient
sample_absolute_gini_coefficient(c(1, 2, 3, 4, 5))
#> [1] 0.3333333
# Hoyer Sparsity
hoyer_sparsity(c(1, 0, 0, 2, 3))
#> [1] 0.5117037

noisy_signal <- c(1.1, 2.1, 3.1)
# Oracle SNR
oracle_snr(c(1, 2, 3), c(1.1, 2.1, 3.1))
#> [1] 466.6667
# Oracle SNR in dB
oracle_snr_db(c(1, 2, 3), c(1.1, 2.1, 3.1))
#> [1] 26.69007
# M2M4 SNR Estimator in dB
m2m4_snr_estimator(c(1.1, 2.1, 3.1), 3, 2)
#> [1] NaN
# M2M4 SNR Estimator in dB
m2m4_snr_estimator_db(c(1.1, 2.1, 3.1), 3, 2)
#> [1] NaN

Anderson-Darling Test

# Anderson-Darling test for normality
anderson_darling_normality_statistic(c(1, 2, 3, 4, 5), 0, 1)
#> [1] 19.49684

T-Tests

# One Sample T-Test with parameters
one_sample_t_test_params(sample_mean = 2, sample_variance = 1, num_samples = 30, assumed_mean = 0)
#> [1] 1.095445e+01 8.021287e-12
# One Sample T-Test
one_sample_t_test(c(1, 2, 3, 4, 5), assumed_mean = 0)
#> [1] 4.2426407 0.0132356
# Two Sample T-Test
two_sample_t_test(c(1, 2, 3), c(4, 5, 6))
#> [1] -3.67423461  0.02131164
# Paired Samples T-Test
paired_samples_t_test(c(1, 2, 3), c(4, 5, 6))
#> [1] -Inf    0

Z-Tests

# One Sample Z-Test with parameters
one_sample_z_test_params(sample_mean = 2, sample_variance = 1, num_samples = 30, assumed_mean = 0)
#> [1] 1.095445e+01 8.021287e-12
# One Sample Z-Test
one_sample_z_test(c(1, 2, 3, 4, 5), assumed_mean = 0)
#> [1] 4.2426407 0.0132356
# Two Sample ZTest
two_sample_z_test(c(1, 2, 3), c(4, 5, 6))
#> [1] -3.67423461  0.02131164

Runs Tests

# Runs Above and Below Threshold
runs_above_and_below_threshold(c(1, 2, 3, 4, 5), threshold = 3)
#> [1] -1.2247449  0.2206714
#' # Runs Above and Below Median
runs_above_and_below_median(c(1, 2, 3, 4, 5))
#> [1] -1.2247449  0.2206714

Ljung-Box Tests

# Ljung-Box test for autocorrelation
ljung_box(c(1, 2, 3, 4, 5), lags = 2, fit_dof = 0)
#> [1] 1.5166667 0.4684465

Linear Regression

x <- c(1, 2, 3, 4, 5)
y <- c(2, 3, 5, 7, 11)
# Simple Ordinary Least Squares
simple_ordinary_least_squares(x, y)
#> [1] -1.0  2.2
# Simple Ordinary Least Squares with R-squared
simple_ordinary_least_squares_with_R_squared(x, y)
#> [1] -1.0000000  2.2000000  0.9453125

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.