The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The Statistical Distributions section of the Boost Math library cover a broad range of areas
# Hyperexponential distribution with probabilities = c(0.5, 0.5) and rates = c(1, 2)
hyperexponential_pdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.08598328
hyperexponential_lpdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -2.453602
hyperexponential_cdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.9231745
hyperexponential_lcdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -0.07993696
hyperexponential_quantile(0.5, c(0.5, 0.5), c(1, 2))
#> [1] 0.4812118
# Hypergeometric distribution with r = 5, n = 10, N = 20
hypergeometric_pdf(3, 5, 10, 20)
#> [1] 0.3482972
hypergeometric_lpdf(3, 5, 10, 20)
#> [1] -1.054699
hypergeometric_cdf(3, 5, 10, 20)
#> [1] 0.8482972
hypergeometric_lcdf(3, 5, 10, 20)
#> [1] -0.1645242
hypergeometric_quantile(0.5, 5, 10, 20)
#> [1] 3
# Inverse Chi-Squared distribution with 3 degrees of freedom, scale = 1
inverse_chi_squared_pdf(2, 3, 1)
#> [1] 0.1730996
inverse_chi_squared_lpdf(2, 3, 1)
#> [1] -1.753888
inverse_chi_squared_cdf(2, 3, 1)
#> [1] 0.6822703
inverse_chi_squared_lcdf(2, 3, 1)
#> [1] -0.3823293
inverse_chi_squared_quantile(0.5, 3, 1)
#> [1] 1.267977
# Kolmogorov-Smirnov distribution with sample size n = 10
kolmogorov_smirnov_pdf(0.5, 10)
#> [1] 0.2695176
kolmogorov_smirnov_lpdf(0.5, 10)
#> [1] -1.311122
kolmogorov_smirnov_cdf(0.5, 10)
#> [1] 0.9865241
kolmogorov_smirnov_lcdf(0.5, 10)
#> [1] -0.01356751
kolmogorov_smirnov_quantile(0.5, 10)
#> [1] 0.2617017
# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
non_central_beta_pdf(0.5, 2, 3, 1)
#> [1] 1.643543
non_central_beta_lpdf(0.5, 2, 3, 1)
#> [1] 0.4968546
non_central_beta_cdf(0.5, 2, 3, 1)
#> [1] 0.5977904
non_central_beta_lcdf(0.5, 2, 3, 1)
#> [1] -0.514515
non_central_beta_quantile(0.5, 2, 3, 1)
#> [1] 0.4416064
# Noncentral Chi-Squared distribution with 3 degrees of freedom and noncentrality
# parameter 1
non_central_chi_squared_pdf(2, 3, 1)
#> [1] 0.172252
non_central_chi_squared_lpdf(2, 3, 1)
#> [1] -1.758797
non_central_chi_squared_cdf(2, 3, 1)
#> [1] 0.3082525
non_central_chi_squared_lcdf(2, 3, 1)
#> [1] -1.176836
non_central_chi_squared_quantile(0.5, 3, 1)
#> [1] 3.213009
# Noncentral F distribution with df1 = 5, df2 = 2 and noncentrality
# parameter 1
non_central_f_pdf(1, 5, 2, 1)
#> [1] 0.3051418
non_central_f_lpdf(1, 5, 2, 1)
#> [1] -1.186979
non_central_f_cdf(1, 5, 2, 1)
#> [1] 0.3737987
non_central_f_lcdf(1, 5, 2, 1)
#> [1] -0.9840377
non_central_f_quantile(0.5, 5, 2, 1)
#> [1] 1.507635
# Noncentral T distribution with 3 degrees of freedom and noncentrality parameter 1
non_central_t_pdf(0, 3, 1)
#> [1] 0.2229319
non_central_t_lpdf(0, 3, 1)
#> [1] -1.500889
non_central_t_cdf(0, 3, 1)
#> [1] 0.1586553
non_central_t_lcdf(0, 3, 1)
#> [1] -1.841022
non_central_t_quantile(0.5, 3, 1)
#> [1] 1.091153
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.