The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Boost Math - Statistical Distributions

Statistics

The Statistical Distributions section of the Boost Math library cover a broad range of areas

Arcsine Distribution

arcsine_pdf(0.5)
#> [1] 0.6366198
arcsine_lpdf(0.5)
#> [1] -0.4515827
arcsine_cdf(0.5)
#> [1] 0.5
arcsine_lcdf(0.5)
#> [1] -0.6931472
arcsine_quantile(0.5)
#> [1] 0.5

Bernoulli Distribution

bernoulli_pdf(1, 0.5)
#> [1] 0.5
bernoulli_lpdf(1, 0.5)
#> [1] -0.6931472
bernoulli_cdf(1, 0.5)
#> [1] 1
bernoulli_lcdf(1, 0.5)
#> [1] 0
bernoulli_quantile(0.5, 0.5)
#> [1] 0

Beta Distribution

# Beta distribution with shape parameters alpha = 2, beta = 5
beta_pdf(0.5, 2, 5)
#> [1] 0.9375
beta_lpdf(0.5, 2, 5)
#> [1] -0.06453852
beta_cdf(0.5, 2, 5)
#> [1] 0.890625
beta_lcdf(0.5, 2, 5)
#> [1] -0.1158318
beta_quantile(0.5, 2, 5)
#> [1] 0.26445

Binomial Distribution

# Binomial dist ribution with n = 10, prob = 0.5
binomial_pdf(3, 10, 0.5)
#> [1] 0.1171875
binomial_lpdf(3, 10, 0.5)
#> [1] -2.14398
binomial_cdf(3, 10, 0.5)
#> [1] 0.171875
binomial_lcdf(3, 10, 0.5)
#> [1] -1.760988
binomial_quantile(0.5, 10, 0.5)
#> [1] 5

Cauchy Distribution

# Cauchy distribution with location = 0, scale = 1
cauchy_pdf(0)
#> [1] 0.3183099
cauchy_lpdf(0)
#> [1] -1.14473
cauchy_cdf(0)
#> [1] 0.5
cauchy_lcdf(0)
#> [1] -0.6931472
cauchy_quantile(0.5)
#> [1] 0

Chi-Squared Distribution

# Chi-Squared distribution with 3 degrees of freedom
chi_squared_pdf(2, 3)
#> [1] 0.2075537
chi_squared_lpdf(2, 3)
#> [1] -1.572365
chi_squared_cdf(2, 3)
#> [1] 0.4275933
chi_squared_lcdf(2, 3)
#> [1] -0.8495828
chi_squared_quantile(0.5, 3)
#> [1] 2.365974

Exponential Distribution

# Exponential distribution with rate parameter lambda = 2
exponential_pdf(1, 2)
#> [1] 0.2706706
exponential_lpdf(1, 2)
#> [1] -1.306853
exponential_cdf(1, 2)
#> [1] 0.8646647
exponential_lcdf(1, 2)
#> [1] -0.1454135
exponential_quantile(0.5, 2)
#> [1] 0.3465736

Extreme Value Distribution

# Extreme Value distribution with location = 0, scale = 1
extreme_value_pdf(0)
#> [1] 0.3678794
extreme_value_lpdf(0)
#> [1] -1
extreme_value_cdf(0)
#> [1] 0.3678794
extreme_value_lcdf(0)
#> [1] -1
extreme_value_quantile(0.5)
#> [1] 0.3665129

F Distribution

# Fisher F distribution with df1 = 5, df2 = 2
fisher_f_pdf(1, 5, 2)
#> [1] 0.3080008
fisher_f_lpdf(1, 5, 2)
#> [1] -1.177653
fisher_f_cdf(1, 5, 2)
#> [1] 0.4312012
fisher_f_lcdf(1, 5, 2)
#> [1] -0.8411806
fisher_f_quantile(0.5, 5, 2)
#> [1] 1.251925

Gamma Distribution

# Gamma distribution with shape = 3, scale = 4
gamma_pdf(2, 3, 4)
#> [1] 0.01895408
gamma_lpdf(2, 3, 4)
#> [1] -3.965736
gamma_cdf(2, 3, 4)
#> [1] 0.01438768
gamma_lcdf(2, 3, 4)
#> [1] -4.241383
gamma_quantile(0.5, 3, 4)
#> [1] 10.69624

Geometric Distribution

# Geometric distribution with probability of success prob = 0.5
geometric_pdf(3, 0.5)
#> [1] 0.0625
geometric_lpdf(3, 0.5)
#> [1] -2.772589
geometric_cdf(3, 0.5)
#> [1] 0.9375
geometric_lcdf(3, 0.5)
#> [1] -0.06453852
geometric_quantile(0.5, 0.5)
#> [1] 0

Holtsmark Distribution

# Holtsmark distribution with location 0 and scale 1
holtsmark_pdf(3)
#> [1] 0.03150942
holtsmark_lpdf(3)
#> [1] -3.457469
holtsmark_cdf(3)
#> [1] 0.9484022
holtsmark_lcdf(3)
#> [1] -0.05297661
holtsmark_quantile(0.5)
#> [1] 0

Hyperexponential Distribution

# Hyperexponential distribution with probabilities = c(0.5, 0.5) and rates = c(1, 2)
hyperexponential_pdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.08598328
hyperexponential_lpdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -2.453602
hyperexponential_cdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.9231745
hyperexponential_lcdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -0.07993696
hyperexponential_quantile(0.5, c(0.5, 0.5), c(1, 2))
#> [1] 0.4812118

Hypergeometric Distribution

# Hypergeometric distribution with r = 5, n = 10, N = 20
hypergeometric_pdf(3, 5, 10, 20)
#> [1] 0.3482972
hypergeometric_lpdf(3, 5, 10, 20)
#> [1] -1.054699
hypergeometric_cdf(3, 5, 10, 20)
#> [1] 0.8482972
hypergeometric_lcdf(3, 5, 10, 20)
#> [1] -0.1645242
hypergeometric_quantile(0.5, 5, 10, 20)
#> [1] 3

Inverse Chi-Squared Distribution

# Inverse Chi-Squared distribution with 3 degrees of freedom, scale = 1
inverse_chi_squared_pdf(2, 3, 1)
#> [1] 0.1730996
inverse_chi_squared_lpdf(2, 3, 1)
#> [1] -1.753888
inverse_chi_squared_cdf(2, 3, 1)
#> [1] 0.6822703
inverse_chi_squared_lcdf(2, 3, 1)
#> [1] -0.3823293
inverse_chi_squared_quantile(0.5, 3, 1)
#> [1] 1.267977

Inverse Gamma Distribution

# Inverse Gamma distribution with shape = 3, scale = 4
inverse_gamma_pdf(2, 3, 4)
#> [1] 0.2706706
inverse_gamma_lpdf(2, 3, 4)
#> [1] -1.306853
inverse_gamma_cdf(2, 3, 4)
#> [1] 0.6766764
inverse_gamma_lcdf(2, 3, 4)
#> [1] -0.3905621
inverse_gamma_quantile(0.5, 3, 4)
#> [1] 1.495853

Inverse Gaussian Distribution

# Inverse Gaussian distribution with mu = 3, lambda = 4
inverse_gaussian_pdf(2, 3, 4)
#> [1] 0.2524295
inverse_gaussian_lpdf(2, 3, 4)
#> [1] -1.376623
inverse_gaussian_cdf(2, 3, 4)
#> [1] 0.4512408
inverse_gaussian_lcdf(2, 3, 4)
#> [1] -0.7957542
inverse_gaussian_quantile(0.5, 3, 4)
#> [1] 2.202698

Kolmogorov-Smirnov Distribution

# Kolmogorov-Smirnov distribution with sample size n = 10
kolmogorov_smirnov_pdf(0.5, 10)
#> [1] 0.2695176
kolmogorov_smirnov_lpdf(0.5, 10)
#> [1] -1.311122
kolmogorov_smirnov_cdf(0.5, 10)
#> [1] 0.9865241
kolmogorov_smirnov_lcdf(0.5, 10)
#> [1] -0.01356751
kolmogorov_smirnov_quantile(0.5, 10)
#> [1] 0.2617017

Landau Distribution

# Landau distribution with location 0 and scale 1
landau_pdf(3)
#> [1] 0.05863949
landau_lpdf(3)
#> [1] -2.836347
landau_cdf(3)
#> [1] 0.7792967
landau_lcdf(3)
#> [1] -0.2493635
landau_quantile(0.5)
#> [1] 0.5756301

Laplace Distribution

# Laplace distribution with location = 0, scale = 1
laplace_pdf(0)
#> [1] 0.5
laplace_lpdf(0)
#> [1] -0.6931472
laplace_cdf(0)
#> [1] 0.5
laplace_lcdf(0)
#> [1] -0.6931472
laplace_quantile(0.5)
#> [1] 0

Logistic Distribution

# Logistic distribution with location = 0, scale = 1
logistic_pdf(0)
#> [1] 0.25
logistic_lpdf(0)
#> [1] -1.386294
logistic_cdf(0)
#> [1] 0.5
logistic_lcdf(0)
#> [1] -0.6931472
logistic_quantile(0.5)
#> [1] 0

Log Normal Distribution

# Log Normal distribution with location = 0, scale = 1
lognormal_pdf(0)
#> [1] 0
lognormal_lpdf(0)
#> [1] -Inf
lognormal_cdf(0)
#> [1] 0
lognormal_lcdf(0)
#> [1] -Inf
lognormal_quantile(0.5)
#> [1] 1

Map-Airy Distribution

# Map-Airy distribution with location 0 and scale 1
mapairy_pdf(3)
#> [1] 0.02799732
mapairy_lpdf(3)
#> [1] -3.575647
mapairy_cdf(3)
#> [1] 0.9316961
mapairy_lcdf(3)
#> [1] -0.07074859
mapairy_quantile(0.5)
#> [1] -0.7167107

Negative Binomial Distribution

negative_binomial_pdf(3, 5, 0.5)
#> [1] 0.1367188
negative_binomial_lpdf(3, 5, 0.5)
#> [1] -1.989829
negative_binomial_cdf(3, 5, 0.5)
#> [1] 0.3632812
negative_binomial_lcdf(3, 5, 0.5)
#> [1] -1.012578
negative_binomial_quantile(0.5, 5, 0.5)
#> [1] 4

Noncentral Beta Distribution

# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
non_central_beta_pdf(0.5, 2, 3, 1)
#> [1] 1.643543
non_central_beta_lpdf(0.5, 2, 3, 1)
#> [1] 0.4968546
non_central_beta_cdf(0.5, 2, 3, 1)
#> [1] 0.5977904
non_central_beta_lcdf(0.5, 2, 3, 1)
#> [1] -0.514515
non_central_beta_quantile(0.5, 2, 3, 1)
#> [1] 0.4416064

Noncentral Chi-Squared Distribution

# Noncentral Chi-Squared distribution with 3 degrees of freedom and noncentrality
# parameter 1
non_central_chi_squared_pdf(2, 3, 1)
#> [1] 0.172252
non_central_chi_squared_lpdf(2, 3, 1)
#> [1] -1.758797
non_central_chi_squared_cdf(2, 3, 1)
#> [1] 0.3082525
non_central_chi_squared_lcdf(2, 3, 1)
#> [1] -1.176836
non_central_chi_squared_quantile(0.5, 3, 1)
#> [1] 3.213009

Noncentral F Distribution

# Noncentral F distribution with df1 = 5, df2 = 2 and noncentrality
# parameter 1
non_central_f_pdf(1, 5, 2, 1)
#> [1] 0.3051418
non_central_f_lpdf(1, 5, 2, 1)
#> [1] -1.186979
non_central_f_cdf(1, 5, 2, 1)
#> [1] 0.3737987
non_central_f_lcdf(1, 5, 2, 1)
#> [1] -0.9840377
non_central_f_quantile(0.5, 5, 2, 1)
#> [1] 1.507635

Noncentral T Distribution

# Noncentral T distribution with 3 degrees of freedom and noncentrality parameter 1
non_central_t_pdf(0, 3, 1)
#> [1] 0.2229319
non_central_t_lpdf(0, 3, 1)
#> [1] -1.500889
non_central_t_cdf(0, 3, 1)
#> [1] 0.1586553
non_central_t_lcdf(0, 3, 1)
#> [1] -1.841022
non_central_t_quantile(0.5, 3, 1)
#> [1] 1.091153

Normal Distribution

# Normal distribution with mean = 0, sd = 1
normal_pdf(0)
#> [1] 0.3989423
normal_lpdf(0)
#> [1] -0.9189385
normal_cdf(0)
#> [1] 0.5
normal_lcdf(0)
#> [1] -0.6931472
normal_quantile(0.5)
#> [1] 0

Pareto Distribution

# Pareto distribution with shape = 1, scale = 1
pareto_pdf(1)
#> [1] 1
pareto_lpdf(1)
#> [1] 0
pareto_cdf(1)
#> [1] 0
pareto_lcdf(1)
#> [1] -Inf
pareto_quantile(0.5)
#> [1] 2

Poisson Distribution

# Poisson distribution with lambda = 1
poisson_pdf(0, 1)
#> [1] 0.3678794
poisson_lpdf(0, 1)
#> [1] -1
poisson_cdf(0, 1)
#> [1] 0.3678794
poisson_lcdf(0, 1)
#> [1] -1
poisson_quantile(0.5, 1)
#> [1] 1

Rayleigh Distribution

# Rayleigh distribution with scale = 1
rayleigh_pdf(1)
#> [1] 0.6065307
rayleigh_lpdf(1)
#> [1] -0.5
rayleigh_cdf(1)
#> [1] 0.3934693
rayleigh_lcdf(1)
#> [1] -0.9327521
rayleigh_quantile(0.5)
#> [1] 1.17741

SaS Point5 Distribution

# SaS Point5 distribution with location 0 and scale 1
saspoint5_pdf(3)
#> [1] 0.02379919
saspoint5_lpdf(3)
#> [1] -3.738104
saspoint5_cdf(3)
#> [1] 0.8164545
saspoint5_lcdf(3)
#> [1] -0.2027841
saspoint5_quantile(0.5)
#> [1] 0

Skew Normal Distribution

# Skew Normal distribution with location = 0, scale = 1, shape = 0
skew_normal_pdf(0)
#> [1] 0.3989423
skew_normal_lpdf(0)
#> [1] -0.9189385
skew_normal_cdf(0)
#> [1] 0.5
skew_normal_lcdf(0)
#> [1] -0.6931472
skew_normal_quantile(0.5)
#> [1] 0

Student’s T Distribution

# Student's t distribution with 3 degrees of freedom
students_t_pdf(0, 3)
#> [1] 0.3675526
students_t_lpdf(0, 3)
#> [1] -1.000889
students_t_cdf(0, 3)
#> [1] 0.5
students_t_lcdf(0, 3)
#> [1] -0.6931472
students_t_quantile(0.5, 3)
#> [1] 0

Triangular Distribution

# Triangular distribution with lower = 0, mode = 1, upper = 2
triangular_pdf(1)
#> [1] 1
triangular_lpdf(1)
#> [1] 0
triangular_cdf(1)
#> [1] 0.5
triangular_lcdf(1)
#> [1] -0.6931472
triangular_quantile(0.5)
#> [1] 1

Uniform Distribution

# Uniform distribution with lower = 0, upper = 1
uniform_pdf(0.5)
#> [1] 1
uniform_lpdf(0.5)
#> [1] 0
uniform_cdf(0.5)
#> [1] 0.5
uniform_lcdf(0.5)
#> [1] -0.6931472
uniform_quantile(0.5)
#> [1] 0.5

Weibull Distribution

# Weibull distribution with shape = 1, scale = 1
weibull_pdf(1)
#> [1] 0.3678794
weibull_lpdf(1)
#> [1] -1
weibull_cdf(1)
#> [1] 0.6321206
weibull_lcdf(1)
#> [1] -0.4586751
weibull_quantile(0.5)
#> [1] 0.6931472

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.