The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The Special Functions section of the Boost Math library cover a broad range of areas
bernoulli_b2n(10)
#> [1] -529.1242
max_bernoulli_b2n()
#> [1] 129
unchecked_bernoulli_b2n(10)
#> [1] -529.1242
bernoulli_b2n(start_index = 0, number_of_bernoullis_b2n = 10)
#> [1] 1.00000000 0.16666667 -0.03333333 0.02380952 -0.03333333 0.07575758
#> [7] -0.25311355 1.16666667 -7.09215686 54.97117794
tangent_t2n(10)
#> [1] 2.908889e+13
tangent_t2n(start_index = 0, number_of_tangent_t2n = 10)
#> [1] 0 1 2 16 272
#> [6] 7936 353792 22368256 1903757312 209865342976
prime(10)
#> [1] 31
max_prime()
#> [1] 9999
fibonacci(10)
#> [1] 55
unchecked_fibonacci(10)
#> [1] 55
# Gamma function for z = 5
tgamma(5)
#> [1] 24
# Gamma function for (1 + z) - 1, where z = 5
tgamma1pm1(5)
#> [1] 119
# Logarithm of the gamma function for z = 5
lgamma_boost(5)
#> [1] 3.178054
# Digamma function for z = 5
digamma_boost(5)
#> [1] 1.506118
# Trigamma function for z = 5
trigamma_boost(5)
#> [1] 0.221323
# Polygamma function of order 1 for z = 5
polygamma(1, 5)
#> [1] 0.221323
# Ratio of gamma functions for a = 5, b = 3
tgamma_ratio(5, 3)
#> [1] 12
# Ratio of gamma functions with delta for a = 5, delta = 2
tgamma_delta_ratio(5, 2)
#> [1] 0.03333333
# Normalised lower incomplete gamma function P(a, z) for a = 5, z = 2
gamma_p(5, 2)
#> [1] 0.05265302
# Normalised upper incomplete gamma function Q(a, z) for a = 5, z = 2
gamma_q(5, 2)
#> [1] 0.947347
# Full lower incomplete gamma function for a = 5, z = 2
tgamma_lower(5, 2)
#> [1] 1.263672
# Full upper incomplete gamma function for a = 5, z = 2
tgamma_upper(5, 2)
#> [1] 22.73633
# Inverse of the normalised upper incomplete gamma function for a = 5, q = 0.5
gamma_q_inv(5, 0.5)
#> [1] 4.670909
# Inverse of the normalised lower incomplete gamma function for a = 5, p = 0.5
gamma_p_inv(5, 0.5)
#> [1] 4.670909
# Inverse of the normalised upper incomplete gamma function with respect to a for z = 2, q = 0.5
gamma_q_inva(2, 0.5)
#> [1] 2.323489
# Inverse of the normalised lower incomplete gamma function with respect to a for z = 2, p = 0.5
gamma_p_inva(2, 0.5)
#> [1] 2.323489
# Derivative of the normalised upper incomplete gamma function for a = 5, z = 2
gamma_p_derivative(5, 2)
#> [1] 0.09022352
# Factorial of 5
factorial_boost(5)
#> [1] 120
# Unchecked factorial of 5 (using table lookup)
unchecked_factorial(5)
#> [1] 120
# Maximum factorial value that can be computed
max_factorial()
#> [1] 170
# Double factorial of 6
double_factorial(6)
#> [1] 48
# Rising factorial of 3 with exponent 2
rising_factorial(3, 2)
#> [1] 12
# Falling factorial of 3 with exponent 2
falling_factorial(3, 2)
#> [1] 6
# Binomial coefficient "5 choose 2"
binomial_coefficient(5, 2)
#> [1] 10
# Euler beta function B(2, 3)
beta_boost(2, 3)
#> [1] 0.08333333
# Normalised incomplete beta function I_x(2, 3) for x = 0.5
ibeta(2, 3, 0.5)
#> [1] 0.6875
# Normalised complement of the incomplete beta function 1 - I_x(2, 3) for x = 0.5
ibetac(2, 3, 0.5)
#> [1] 0.3125
# Full incomplete beta function B_x(2, 3) for x = 0.5
beta_boost(2, 3, 0.5)
#> [1] 0.05729167
# Full complement of the incomplete beta function 1 - B_x(2, 3) for x = 0.5
betac(2, 3, 0.5)
#> [1] 0.02604167
# Inverse of the normalised incomplete beta function I_x(2, 3) = 0.5
ibeta_inv(2, 3, 0.5)
#> [1] 0.3857276
# Inverse of the normalised complement of the incomplete beta function I_x(2, 3) = 0.5
ibetac_inv(2, 3, 0.5)
#> [1] 0.3857276
# Inverse of the normalised complement of the incomplete beta function I_x(a, b)
# with respect to a for x = 0.5 and q = 0.5
ibetac_inva(3, 0.5, 0.5)
#> [1] 3
# Inverse of the normalised incomplete beta function I_x(a, b)
# with respect to b for x = 0.5 and p = 0.5
ibeta_invb(0.8, 0.5, 0.5)
#> [1] 0.8
# Inverse of the normalised complement of the incomplete beta function I_x(a, b)
# with respect to b for x = 0.5 and q = 0.5
ibetac_invb(2, 0.5, 0.5)
#> [1] 2
# Derivative of the incomplete beta function with respect to x for a = 2, b = 3, x = 0.5
ibeta_derivative(2, 3, 0.5)
#> [1] 1.5
# Legendre polynomial of the first kind P_2(0.5)
legendre_p(2, 0.5)
#> [1] -0.125
# Derivative of the Legendre polynomial of the first kind P_2'(0.5)
legendre_p_prime(2, 0.5)
#> [1] 1.5
# Zeros of the Legendre polynomial of the first kind P_2
legendre_p_zeros(2)
#> [1] 0.5773503
# Legendre polynomial of the first kind with order 1 P_2^1(0.5)
legendre_p_m(2, 1, 0.5)
#> [1] -1.299038
# Legendre polynomial of the second kind Q_2(0.5)
legendre_q(2, 0.5)
#> [1] -0.8186633
# Next Legendre polynomial of the first kind P_3(0.5) using P_2(0.5) and P_1(0.5)
legendre_next(2, 0.5, legendre_p(2, 0.5), legendre_p(1, 0.5))
#> [1] -0.4375
# Next Legendre polynomial of the first kind with order 1 P_3^1(0.5) using P_2^1(0.5) and P_1^1(0.5)
legendre_next_m(2, 1, 0.5, legendre_p_m(2, 1, 0.5), legendre_p_m(1, 1, 0.5))
#> [1] -0.3247595
# Laguerre polynomial of the first kind L_2(0.5)
laguerre(2, 0.5)
#> [1] 0.125
# Laguerre polynomial of the first kind with order 1 L_2^1(0.5)
laguerre_m(2, 1, 0.5)
#> [1] 1.625
# Next Laguerre polynomial of the first kind L_3(0.5) using L_2(0.5) and L_1(0.5)
laguerre_next(2, 0.5, laguerre(2, 0.5), laguerre(1, 0.5))
#> [1] -0.1458333
# Next Laguerre polynomial of the first kind with order 1 L_3^1(0.5) using L_2^1(0.5) and L_1^1(0.5)
laguerre_next_m(2, 1, 0.5, laguerre_m(2, 1, 0.5), laguerre_m(1, 1, 0.5))
#> [1] 1.479167
# Hermite polynomial H_2(0.5)
hermite(2, 0.5)
#> [1] -1
# Next Hermite polynomial H_3(0.5) using H_2(0.5) and H_1(0.5)
hermite_next(2, 0.5, hermite(2, 0.5), hermite(1, 0.5))
#> [1] -5
# Chebyshev polynomial of the first kind T_2(0.5)
chebyshev_t(2, 0.5)
#> [1] -0.5
# Chebyshev polynomial of the second kind U_2(0.5)
chebyshev_u(2, 0.5)
#> [1] 0
# Derivative of the Chebyshev polynomial of the first kind T_2'(0.5)
chebyshev_t_prime(2, 0.5)
#> [1] 2
# Next Chebyshev polynomial of the first kind T_3(0.5) using T_2(0.5) and T_1(0.5)
chebyshev_next(0.5, chebyshev_t(2, 0.5), chebyshev_t(1, 0.5))
#> [1] -1
# Chebyshev polynomial of the first kind using Clenshaw's recurrence with coefficients
# c = c(1, 0, -1) at x = 0.5
chebyshev_clenshaw_recurrence(c(1, 0, -1), 0.5)
#> [1] 1
# Chebyshev polynomial of the first kind using Clenshaw's recurrence with interval [0, 1]
chebyshev_clenshaw_recurrence_ab(c(1, 0, -1), 0, 1, 0.5)
#> [1] 1.5
# Spherical harmonic function Y_2^1(0.5, 0.5)
spherical_harmonic(2, 1, 0.5, 0.5)
#> [1] -0.2852481-0.1558318i
# Real part of the spherical harmonic function Y_2^1(0.5, 0.5)
spherical_harmonic_r(2, 1, 0.5, 0.5)
#> [1] -0.2852481
# Imaginary part of the spherical harmonic function Y_2^1(0.5, 0.5)
spherical_harmonic_i(2, 1, 0.5, 0.5)
#> [1] -0.1558318
# Gegenbauer polynomial C_2^(1)(0.5)
gegenbauer(2, 1, 0.5)
#> [1] 0
# Derivative of the Gegenbauer polynomial C_2^(1)'(0.5)
gegenbauer_prime(2, 1, 0.5)
#> [1] 4
# k-th derivative of the Gegenbauer polynomial C_2^(1)''(0.5)
gegenbauer_derivative(2, 1, 0.5, 2)
#> [1] 8
# Jacobi polynomial P_2^(1, 2)(0.5)
jacobi(2, 1, 2, 0.5)
#> [1] -0.1875
# Derivative of the Jacobi polynomial P_2^(1, 2)'(0.5)
jacobi_prime(2, 1, 2, 0.5)
#> [1] 3.75
# Second derivative of the Jacobi polynomial P_2^(1, 2)''(0.5)
jacobi_double_prime(2, 1, 2, 0.5)
#> [1] 10.5
# 3rd derivative of the Jacobi polynomial P_2^(1, 2)^(k)(0.5)
jacobi_derivative(2, 1, 2, 0.5, 3)
#> [1] 0
# Bessel function of the first kind J_0(1)
cyl_bessel_j(0, 1)
#> [1] 0.7651977
# Bessel function of the second kind Y_0(1)
cyl_neumann(0, 1)
#> [1] 0.08825696
# Modified Bessel function of the first kind I_0(1)
cyl_bessel_i(0, 1)
#> [1] 1.266066
# Modified Bessel function of the second kind K_0(1)
cyl_bessel_k(0, 1)
#> [1] 0.4210244
# Spherical Bessel function of the first kind j_0(1)
sph_bessel(0, 1)
#> [1] 0.841471
# Spherical Bessel function of the second kind y_0(1)
sph_neumann(0, 1)
#> [1] -0.5403023
# Derivative of the Bessel function of the first kind J_0(1)
cyl_bessel_j_prime(0, 1)
#> [1] -0.4400506
# Derivative of the Bessel function of the second kind Y_0(1)
cyl_neumann_prime(0, 1)
#> [1] 0.7812128
# Derivative of the modified Bessel function of the first kind I_0(1)
cyl_bessel_i_prime(0, 1)
#> [1] 0.5651591
# Derivative of the modified Bessel function of the second kind K_0(1)
cyl_bessel_k_prime(0, 1)
#> [1] -0.6019072
# Derivative of the spherical Bessel function of the first kind j_0(1)
sph_bessel_prime(0, 1)
#> [1] -0.3011687
# Derivative of the spherical Bessel function of the second kind y_0(1)
sph_neumann_prime(0, 1)
#> [1] 1.381773
# Finding the first zero of the Bessel function of the first kind J_0
cyl_bessel_j_zero(0, 1)
#> [1] 2.404826
# Finding the first zero of the Bessel function of the second kind Y_0
cyl_neumann_zero(0, 1)
#> [1] 0.893577
# Finding multiple zeros of the Bessel function of the first kind J_0 starting from index 1
cyl_bessel_j_zero(0, start_index = 1, number_of_zeros = 5)
#> [1] 2.404826 5.520078 8.653728 11.791534 14.930918
# Finding multiple zeros of the Bessel function of the second kind Y_0 starting from index 1
cyl_neumann_zero(0, start_index = 1, number_of_zeros = 5)
#> [1] 0.893577 3.957678 7.086051 10.222345 13.361097
airy_ai(2)
#> [1] 0.03492413
airy_bi(2)
#> [1] 3.298095
airy_ai_prime(2)
#> [1] -0.05309038
airy_bi_prime(2)
#> [1] 4.100682
airy_ai_zero(1)
#> [1] -2.338107
airy_bi_zero(1)
#> [1] -1.173713
airy_ai_zero(start_index = 1, number_of_zeros = 5)
#> [1] -2.338107 -4.087949 -5.520560 -6.786708 -7.944134
airy_bi_zero(start_index = 1, number_of_zeros = 5)
#> [1] -1.173713 -3.271093 -4.830738 -6.169852 -7.376762
# Carlson's elliptic integral Rf with parameters x = 1, y = 2, z = 3
ellint_rf(1, 2, 3)
#> [1] 0.7269459
# Carlson's elliptic integral Rd with parameters x = 1, y = 2, z = 3
ellint_rd(1, 2, 3)
#> [1] 0.2904603
# Carlson's elliptic integral Rj with parameters x = 1, y = 2, z = 3, p = 4
ellint_rj(1, 2, 3, 4)
#> [1] 0.2398481
# Carlson's elliptic integral Rc with parameters x = 1, y = 2
ellint_rc(1, 2)
#> [1] 0.7853982
# Carlson's elliptic integral Rg with parameters x = 1, y = 2, z = 3
ellint_rg(1, 2, 3)
#> [1] 1.401847
# Incomplete elliptic integral of the first kind with k = 0.5, phi = pi/4
ellint_1(0.5, pi / 4)
#> [1] 0.8043661
# Complete elliptic integral of the first kind
ellint_1(0.5)
#> [1] 1.68575
# Incomplete elliptic integral of the second kind with k = 0.5, phi = pi/4
ellint_2(0.5, pi / 4)
#> [1] 0.767196
# Complete elliptic integral of the second kind
ellint_2(0.5)
#> [1] 1.467462
# Incomplete elliptic integral of the third kind with k = 0.5, n = 0.5, phi = pi/4
ellint_3(0.5, 0.5, pi / 4)
#> [1] 0.8930657
# Complete elliptic integral of the third kind with k = 0.5, n = 0.5
ellint_3(0.5, 0.5)
#> [1] 2.413672
# Incomplete elliptic integral D with k = 0.5, phi = pi/4
ellint_d(0.5, pi / 4)
#> [1] 0.1486805
# Complete elliptic integral D
ellint_d(0.5)
#> [1] 0.8731526
# Jacobi zeta function with k = 0.5, phi = pi/4
jacobi_zeta(0.5, pi / 4)
#> [1] 0.06698741
# Heuman's lambda function with k = 0.5, phi = pi/4
heuman_lambda(0.5, pi / 4)
#> [1] 0.6632254
# Jacobi Elliptic Functions
k <- 0.5
u <- 2
jacobi_elliptic(k, u)
#> $sn
#> [1] 0.9628982
#>
#> $cn
#> [1] -0.269865
#>
#> $dn
#> [1] 0.8764741
# Individual Jacobi Elliptic Functions
jacobi_cd(k, u)
#> [1] -0.3078984
jacobi_cn(k, u)
#> [1] -0.269865
jacobi_cs(k, u)
#> [1] -0.2802632
jacobi_dc(k, u)
#> [1] -3.247825
jacobi_dn(k, u)
#> [1] 0.8764741
jacobi_ds(k, u)
#> [1] 0.9102458
jacobi_nc(k, u)
#> [1] -3.705557
jacobi_nd(k, u)
#> [1] 1.140935
jacobi_ns(k, u)
#> [1] 1.038531
jacobi_sc(k, u)
#> [1] -3.568074
jacobi_sd(k, u)
#> [1] 1.098604
jacobi_sn(k, u)
#> [1] 0.9628982
# Jacobi Theta Functions
x <- 0.5
q <- 0.9
tau <- 1.5
jacobi_theta1(x, q)
#> [1] 0.0001025529
jacobi_theta1tau(x, tau)
#> [1] 0.2951461
jacobi_theta2(x, q)
#> [1] 0.5090257
jacobi_theta2tau(x, tau)
#> [1] 0.5403556
jacobi_theta3(x, q)
#> [1] 0.5090257
jacobi_theta3tau(x, tau)
#> [1] 1.009707
jacobi_theta3m1(x, q)
#> [1] -0.4909743
jacobi_theta3m1tau(x, tau)
#> [1] 0.00970738
jacobi_theta4(x, q)
#> [1] 0.0001025529
jacobi_theta4tau(x, tau)
#> [1] 0.9902926
jacobi_theta4m1(x, q)
#> [1] -0.9998974
jacobi_theta4m1tau(x, tau)
#> [1] -0.009707391
# Lambert W Function (Principal Branch)
lambert_w0(0.3)
#> [1] 0.2367553
# Lambert W Function (Branch -1)
lambert_wm1(-0.3)
#> [1] -1.781337
# Derivative of the Lambert W Function (Principal Branch)
lambert_w0_prime(0.3)
#> [1] 0.6381087
# Derivative of the Lambert W Function (Branch -1)
lambert_wm1_prime(-0.3)
#> [1] -7.599525
# Hypergeometric Function 1F0
hypergeometric_1F0(2, 0.2)
#> [1] 1.5625
# Hypergeometric Function 0F1
hypergeometric_0F1(1, 0.8)
#> [1] 1.974957
# Hypergeometric Function 2F0
hypergeometric_2F0(0.1, -1, 0.1)
#> [1] 0.99
# Hypergeometric Function 1F1
hypergeometric_1F1(2, 3, 1)
#> [1] 2
# Regularised Hypergeometric Function 1F1
hypergeometric_1F1_regularized(2, 3, 1)
#> [1] 1
# Logarithm of the Hypergeometric Function 1F1
log_hypergeometric_1F1(2, 3, 1)
#> [1] 0.6931472
#> attr(,"sign")
#> [1] 1
# Hypergeometric Function pFq
hypergeometric_pFq(c(2, 3), c(4, 5), 6)
#> [1] 11.32427
# sin(pi * 0.5)
sin_pi(0.5)
#> [1] 1
# cos(pi * 0.5)
cos_pi(0.5)
#> [1] 0
# log(1 + 0.5)
log1p_boost(0.5)
#> [1] 0.4054651
# exp(0.5) - 1
expm1_boost(0.5)
#> [1] 0.6487213
cbrt(8)
#> [1] 2
# sqrt(1 + 0.5) - 1
sqrt1pm1(0.5)
#> [1] 0.2247449
# 2^3 - 1
powm1(2, 3)
#> [1] 7
hypot(3, 4)
#> [1] 5
rsqrt(4)
#> [1] 0.5
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.