The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The Interpolation section of the Boost Math library provides methods for numerical integration and differentiation of functions. These methods can be used directly in R without needing any additional compilation.
control_points <- list(c(0, 0, 0), c(1, 2, 0), c(2, 0, 0), c(3, 3, 0))
interpolator <- bezier_polynomial(control_points)
xi <- 0.8
interpolator$interpolate(xi)
#> [1] 2.400 1.728 0.000
interpolator$prime(xi)
#> [1] 3.00 4.08 0.00
new_control_point <- c(1.5, 1, 0)
interpolator$edit_control_point(new_control_point, 2)
#> NULL
control_points <- list(c(0, 0, 0), c(1, 1, 0), c(2, 0, 0), c(3, 1, 0))
interpolator <- catmull_rom(control_points)
xi <- 1.5
interpolator$interpolate(xi)
#> [1] 1.2613446 0.8307972 0.0000000
interpolator$prime(xi)
#> [1] 0.8408964 -1.1363078 0.0000000
interpolator$max_parameter()
#> [1] 3.567621
interpolator$parameter_at_point(2)
#> [1] 2.378414
x <- c(0, 1, 2)
y <- c(0, 1, 0)
dydx <- c(1, 0, -1)
d2ydx2 <- c(0, -1, 0)
interpolator <- quintic_hermite(x, y, dydx, d2ydx2)
xi <- 0.5
interpolator$interpolate(xi)
#> [1] 0.640625
interpolator$prime(xi)
#> [1] 1.40625
interpolator$double_prime(xi)
#> [1] -1.25
interpolator$push_back(3, 0, 1, 0)
#> NULL
interpolator$domain()
#> [1] 0 3
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.