The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The boilerplate
package provides tools for managing and
generating standardised text for methods and results sections of
scientific reports. It uses a unified database system with template
variable substitution, making it easy to maintain consistent language
across projects while allowing for customisation.
New in v1.1.0: The package now defaults to a single unified JSON database, simplifying database management and improving version control integration.
{{variable}}
placeholders for dynamic contentmethods.statistical.longitudinal
)First, create and initialise your boilerplate databases:
# Initialise unified database with default content
# Creates a single boilerplate_unified.json file
# Using a temporary directory for this example
temp_intro <- file.path(tempdir(), "intro_example")
boilerplate_init(
data_path = temp_intro,
create_dirs = TRUE,
create_empty = FALSE, # Use FALSE to get example content
confirm = FALSE,
quiet = FALSE
)
Import your databases to work with them:
Generate text with variable substitution:
# Generate methods text
methods_text <- boilerplate_generate_text(
category = "methods",
sections = c("sample.default", "statistical.default"), # Use valid paths
global_vars = list(
n_total = 5000,
exposure_var = "political_conservative",
outcome_var = "anxiety",
population = "New Zealand adults"
),
db = unified_db
)
cat(methods_text)
Create formatted descriptions of your measures:
# Add a new entry
unified_db <- boilerplate_add_entry(
db = unified_db,
path = "methods.sample.online",
value = "We recruited {{n_total}} participants through online platforms.",
category = "methods"
)
# Update existing entry
unified_db <- boilerplate_update_entry(
db = unified_db,
path = "methods.sample.default",
value = "Our sample consisted of {{n_total}} {{population}}.",
category = "methods"
)
# Save changes
boilerplate_save(unified_db, data_path = temp_intro, confirm = FALSE, quiet = TRUE)
# Update multiple references at once
unified_db <- boilerplate_batch_edit(
db = unified_db,
field = "reference",
new_value = "smith2024",
target_entries = c("anxiety", "depression", "stress"),
category = "measures"
)
# Clean text fields
unified_db <- boilerplate_batch_clean(
db = unified_db,
field = "description",
remove_chars = c("@", "[", "]"),
trim_whitespace = TRUE,
category = "measures"
)
The template system uses {{variable}}
placeholders that
are replaced with actual values:
# Create a template
template_text <- "We analysed data from {{n_total}} {{population}}
({{n_female}} female, {{n_male}} male) with a mean age of {{age_mean}}
years (SD = {{age_sd}})."
# Use in your database
unified_db <- boilerplate_add_entry(
db = unified_db,
path = "methods.participants.demographics",
value = template_text,
category = "methods"
)
# Generate with variables
demographics_text <- boilerplate_generate_text(
category = "methods",
sections = "participants.demographics",
global_vars = list(
n_total = 1000,
population = "university students",
n_female = 600,
n_male = 400,
age_mean = 21.3,
age_sd = 3.2
),
db = unified_db
)
Use Version Control: Export your databases regularly for version control
Organise Hierarchically: Use dot notation for clear organisation
Document Your Variables: Keep a record of template variables
Use Meaningful Names: Choose clear, descriptive names for entries
# Work with multiple projects
# Create a project for shared content
boilerplate_init(project = "shared", confirm = FALSE)
# Copy content between projects
boilerplate_copy_from_project(
from_project = "shared",
to_project = "default",
paths = c("methods.statistical", "measures.anxiety"),
confirm = FALSE
)
# List available projects
projects <- boilerplate_list_projects(details = TRUE)
The boilerplate package includes version management features to help you track and restore different versions of your databases.
# View latest backup without restoring
backup_db <- boilerplate_restore_backup(category = "methods")
# Restore backup as current version
boilerplate_restore_backup(
category = "methods",
restore = TRUE,
confirm = TRUE
)
# Restore specific backup by timestamp
boilerplate_restore_backup(
category = "methods",
backup_version = "20240110_120000",
restore = TRUE
)
For more information and examples, see:
help(package = "boilerplate")
?boilerplate_generate_text
system.file("examples", package = "boilerplate")
system.file("extdata", package = "boilerplate")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.