The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

bnns bnns website

Lifecycle: experimental R-CMD-check Codecov test coverage rhub

The bnns package provides tools to fit Bayesian Neural Networks (BNNs) for regression and classification problems. It is designed to be flexible, supporting various network architectures, activation functions, and output types, making it suitable for both simple and complex data analysis tasks.

Features

Installation (stable CRAN version)

To install the bnns package from CRAN, use the following:

install.packages("bnns")

Installation (development version)

To install the bnns package from GitHub, use the following:

# Install devtools if not already installed
if (!requireNamespace("devtools", quietly = TRUE)) {
  install.packages("devtools")
}

# Install bnns
devtools::install_github("swarnendu-stat/bnns")

Getting Started

1. Iris Data

We use the iris data for regression:

head(iris)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa

2. Fit a BNN Model

To fit a Bayesian Neural Network:

library(bnns)

iris_bnn <- bnns(Sepal.Length ~ -1 + ., data = iris, L = 1, act_fn = 3, nodes = 4, out_act_fn = 1, chains = 1)

3. Model Summary

Summarize the fitted model:

summary(iris_bnn)
#> Call:
#> bnns.default(formula = Sepal.Length ~ -1 + ., data = iris, L = 1, 
#>     nodes = 4, act_fn = 3, out_act_fn = 1, chains = 1)
#> 
#> Data Summary:
#> Number of observations: 150 
#> Number of features: 6 
#> 
#> Network Architecture:
#> Number of hidden layers: 1 
#> Nodes per layer: 4 
#> Activation functions: 3 
#> Output activation function: 1 
#> 
#> Posterior Summary (Key Parameters):
#>                mean      se_mean         sd       2.5%         25%        50%
#> w_out[1]  0.8345667 0.0728930420 0.65030179 -0.4150176  0.38054488  0.7769148
#> w_out[2] -0.3719132 0.4067431773 0.96605220 -1.7062097 -1.03225732 -0.7365945
#> w_out[3]  0.4783495 0.1965466796 0.86504113 -1.2350476  0.02944919  0.5634587
#> w_out[4]  0.4537029 0.3334670001 0.89069977 -1.3791675  0.09313077  0.5518418
#> b_out     2.2082591 0.0614548175 1.18859472 -0.1036760  1.38416657  2.2072194
#> sigma     0.3015085 0.0004831093 0.01804107  0.2693205  0.28895030  0.3013415
#>                75%     97.5%       n_eff      Rhat
#> w_out[1] 1.2478028 2.1730066   79.589862 1.0254227
#> w_out[2] 0.4680286 1.7548944    5.641059 1.3136052
#> w_out[3] 1.0454306 2.0448172   19.370556 1.1335888
#> w_out[4] 1.0281249 2.0733860    7.134392 1.1997484
#> b_out    3.1573563 4.2214829  374.072451 1.0016806
#> sigma    0.3128869 0.3386066 1394.549362 0.9988699
#> 
#> Model Fit Information:
#> Iterations: 1000 
#> Warmup: 200 
#> Thinning: 1 
#> Chains: 1 
#> 
#> Predictive Performance:
#> RMSE (training): 0.2821305 
#> MAE (training): 0.2234606 
#> 
#> Notes:
#> Check convergence diagnostics for parameters with high R-hat values.

4. Predictions

Make predictions using the trained model:

pred <- predict(iris_bnn)

5. Visualization

Visualize true vs predicted values for regression:

plot(iris$Sepal.Length, rowMeans(pred), main = "True vs Predicted", xlab = "True Values", ylab = "Predicted Values")
abline(0, 1, col = "red")

Applications

Regression Example (with custom priors)

Use bnns for regression analysis to model continuous outcomes, such as predicting patient biomarkers in clinical trials.

model <- bnns(Sepal.Length ~ -1 + .,
  data = iris, L = 1, act_fn = 3, nodes = 4,
  out_act_fn = 1, chains = 1,
  prior_weights = list(dist = "uniform", params = list(alpha = -1, beta = 1)),
  prior_bias = list(dist = "cauchy", params = list(mu = 0, sigma = 2.5)),
  prior_sigma = list(dist = "inv_gamma", params = list(alpha = 1, beta = 1))
)

Classification Example

For binary or multiclass classification, set the out_act_fn to 2 (binary) or 3 (multiclass). For example:

# Simulate binary classification data
df <- data.frame(
  x1 = runif(10), x2 = runif(10),
  y = sample(0:1, 10, replace = TRUE)
)

# Fit a binary classification BNN
model <- bnns(y ~ -1 + x1 + x2,
  data = df, L = 2, nodes = c(16, 8),
  act_fn = c(3, 2), out_act_fn = 2, iter = 1e2,
  warmup = 5e1, chains = 1
)

Clinical Trial Applications

Explore posterior probabilities to estimate treatment effects or success probabilities in clinical trials. For example, calculate the posterior probability of achieving a clinically meaningful outcome in a given population.

Documentation

Contributing

Contributions are welcome! Please raise issues or submit pull requests on GitHub.

License

This package is licensed under the Apache License. See LICENSE for details.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.