The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The package bmscstan provides useful functions to fit Bayesian Multilevel Single Case models (BMSC) using as backend Stan (Carpenter et al. 2017).
This approach is based on the seminal approach of the Crawford’s tests (Crawford and Howell 1998; Crawford and Garthwaite 2005; Crawford et al. 2010), using a small control sample of individuals, to see whether the performance of the single case deviates from them. Unfortunately, Crawford’s tests are limited to a number of specific experimental designs that do not allow researchers to use complex experimental designs.
The BMSC approach is born mainly to deal with this problem: its purpose is, in fact, to allow the fitting of models with the same flexibility of a Multilevel Model, with single case and controls data.
The core function of the bmscstan package is
BMSC
, whose theoretical assumptions, and its validation are
reported in (Scandola and Romano
2021).
The syntax used by the BMSC
function is extremely
similar to the syntax used in the lme4
package. However,
the specification of random effects is limited, but it can cover the
greatest part of cases (for further details, please see
?bmscstan::randomeffects
).
In order to show an example on the use of the bmscstan package, the datasets in this package will be used.
In these datasets we have data coming from a Body Sidedness Effect paradigm (Ottoboni et al. 2005; Tessari et al. 2012), that is a Simon-like paradigm useful to measure body representation.
In this experimental paradigm, participants have to answer to a circle showed in the centre of the computer screen, superimposed to an irrelevant image of a left or right hand, or to a left or right foot.
The circle can be of two colors (e.g. red or blue), and participants have to press one button with the left when the circle is of a specific colour, and with the right hand when the circle is of the another colour.
When the irrelevant background image (foot or hand) is incongruent with the hand used to answer, the reaction times and frequency of errors are higher.
The two irrelevant backgrounds are administered in different experimental blocks.
This is considered an effect of the body representation.
In the package there are two datasets, one composed by 16 healthy control participants, and the other one by an individual affected by right unilateral brachial plexus lesion (however, s/he could independently press the keyboard buttons).
The datasets are called data.pt
for the single case, and
data.ctrl
for the control group, and they can be loaded
using data(BSE)
.
In these datasets there are the Reaction Times RT
, a
Body.District
factor with levels FOOT and HAND, a
Congruency
factor (levels: Congruent, Incongruent), and a
Side
factor (levels: Left, Right). In the
data.ctrl
dataset there also is an ID
factor,
representing the different 16 control participants.
library(ggplot2)
library(bmscstan)
data(BSE)
str(data.pt)
#> 'data.frame': 467 obs. of 4 variables:
#> $ RT : int 562 424 411 491 439 593 504 483 467 413 ...
#> $ Body.District: Factor w/ 2 levels "FOOT","HAND": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Congruency : Factor w/ 2 levels "Congruent","Incongruent": 1 2 2 1 1 2 2 1 1 2 ...
#> $ Side : Factor w/ 2 levels "Left","Right": 1 2 1 2 1 1 2 1 2 2 ...
str(data.ctrl)
#> 'data.frame': 4049 obs. of 5 variables:
#> $ RT : int 785 641 938 841 486 425 408 394 611 387 ...
#> $ Body.District: Factor w/ 2 levels "FOOT","HAND": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Congruency : Factor w/ 2 levels "Congruent","Incongruent": 2 2 2 2 2 2 1 1 1 1 ...
#> $ Side : Factor w/ 2 levels "Left","Right": 1 1 1 1 2 1 1 1 2 2 ...
#> $ ID : Factor w/ 16 levels "HN_017","HN_019",..: 1 1 1 1 1 1 1 1 1 1 ...
ggplot(data.pt, aes(y = RT, x = Body.District:Side , fill = Congruency))+
geom_boxplot()
ggplot(data.ctrl, aes(y = RT, x = Body.District:Side , fill = Congruency))+
geom_boxplot()+
facet_wrap( ~ ID , ncol = 4)
These data seem to have some outliers. Let see if they are normally distributed.
qqnorm(data.ctrl$RT, main = "Controls")
qqline(data.ctrl$RT)
qqnorm(data.pt$RT, main = "Single Case")
qqline(data.pt$RT)
They are not normally distributed. Outliers will be removed by using
the boxplot.stats
function.
<- boxplot.stats( data.ctrl$RT )$out
out <- droplevels( data.ctrl[ !data.ctrl$RT %in% out , ] )
data.ctrl
<- boxplot.stats( data.pt$RT )$out
out <- droplevels( data.pt[ !data.pt$RT %in% out , ] )
data.pt
qqnorm(data.ctrl$RT, main = "Controls")
qqline(data.ctrl$RT)
qqnorm(data.pt$RT, main = "Single Case")
qqline(data.pt$RT)
They are not perfect, but definitively better.
First of all, there is the necessity to think to our hypotheses, and setting the contrast matrices consequently.
In all cases, our factors have only two levels. Therefore, we set the
factors with a Treatment Contrasts matrix, with baseline level for
Side
the Left level, for Congruency
the Congruent level, and for Body.District
the
FOOT level.
In this way, each coefficient will represent the difference between the two levels.
contrasts( data.ctrl$Side ) <- contr.treatment( n = 2 )
contrasts( data.ctrl$Congruency ) <- contr.treatment( n = 2 )
contrasts( data.ctrl$Body.District ) <- contr.treatment( n = 2 )
contrasts( data.pt$Side ) <- contr.treatment( n = 2 )
contrasts( data.pt$Congruency ) <- contr.treatment( n = 2 )
contrasts( data.pt$Body.District ) <- contr.treatment( n = 2 )
The use of the BMSC
function, for those who are used to
lme4
or brms
syntax should be
straightforward.
In this case, we want to fit the following model:
RT ~ Body.District * Congruency * Side + (Congruency * Side | ID : Body.District)
Unfortunately, BMSC
does not directly allow the syntax
ID : Body.District
in the specification of the random
effects.
Therefore, it is necessary to create a new variable for
ID : Body.District
$BD_ID <- interaction( data.ctrl$Body.District , data.ctrl$ID ) data.ctrl
and the model would be:
RT ~ Body.District * Congruency * Side + (Congruency * Side | BD_ID)
For further details concerning the random effects available in
bmscstan
, please type
?bmscstan::randomeffect
.
At this point, fitting the model is easy, and it can be done with the use of a single function.
<- BMSC(formula = RT ~ Body.District * Congruency * Side +
mdl * Side | BD_ID),
(Congruency data_ctrl = data.ctrl,
data_sc = data.pt,
chains = 2,
cores = 1,
seed = 2020)
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.001497 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 14.97 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 1: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 1: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 1: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 1: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 1: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 190.083 seconds (Warm-up)
#> Chain 1: 178.987 seconds (Sampling)
#> Chain 1: 369.07 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.000939 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 9.39 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 2: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 2: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 2: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 2: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 2: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 2: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 2: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 188.854 seconds (Warm-up)
#> Chain 2: 179.24 seconds (Sampling)
#> Chain 2: 368.094 seconds (Total)
#> Chain 2:
After fitting the model, we should check its quality by means of
Posterior Predictive P-Values (Gelman
2013) with the bmscstan::pp_check
function.
Thanks to this graphical function, we will see if the observed data and the data sampled from the posterior distributions of our BMSC model are similar.
If we observe strong deviations, it means that your BMSC model is not
adequately describing your data. In this case, you might want to change
the priors distribution (see the help
page), change the
random effects structure, or transform your dependent variable (using
the logarithm or other math functions).
pp_check( mdl )
#> TableGrob (2 x 1) "arrange": 2 grobs
#> z cells name grob
#> 1 1 (1-1,1-1) arrange gtable[layout]
#> 2 2 (2-2,1-1) arrange gtable[layout]
In both the controls and the single case data, the Posterior Predictive P-Values check seems to adequately resemble the observed data.
A further control on our model is given by checking the Effective Sample Size (ESS) for each coefficient and the \(\hat{R}\) diagnostic index (Gelman and Rubin 1992).
The ESS is the “effective number of simulation draws” for any coefficient, namely the approximate number of independent draws, taking into account that the various simulations in a Monte Carlo Markov Chain (MCMC) are not independent each other. For further details, see an introductory book in Bayesian Statistics. A good ESS estimates should be \(ESS > 100\) or \(ESS > 10\%\) of the total draws (remembering that you should remove the burn-in simulations from the total iterations counting).
The \(\hat{R}\) is an index of the
convergence of the MCMCs. In BMSC
the default is 4.
Usually, MCMCs are considered convergent when \(\hat{R} < 1.1\) (Stan
default).
In order to check these values, the summary.BMSC
function is needed (see next section).
summary.BMSC
outputThe output of the brmscstan::summary.BMSC
function is
divided in four main parts:
print( sum_mdl <- summary( mdl ) , digits = 3 )
#>
#> Bayesian Multilevel Single Case model
#>
#> RT ~ Body.District * Congruency * Side + (Congruency * Side |
#> BD_ID)
#>
#> [1] "Priors for the regression coefficients: normal distribution; Dispersion parameter (scale or sigma): 10"
#>
#>
#> Fixed Effects for the Control Group
#>
#> mean se_mean sd 2.5% 25% 50%
#> (Intercept) 202.25 0.1383 7.82 186.80 196.970 202.24
#> Body.District2 24.21 0.1542 8.06 8.31 18.842 24.24
#> Congruency2 16.55 0.1646 6.95 3.82 11.658 16.33
#> Side2 19.90 0.1737 7.62 5.27 14.702 19.76
#> Body.District2:Congruency2 -9.28 0.0938 5.35 -19.65 -12.864 -9.20
#> Body.District2:Side2 -4.43 0.1034 5.31 -15.17 -7.930 -4.47
#> Congruency2:Side2 -5.63 0.1440 7.49 -20.68 -10.574 -5.62
#> Body.District2:Congruency2:Side2 4.01 0.1325 6.99 -10.28 -0.645 4.01
#> 75% 97.5% n_eff Rhat BF10
#> (Intercept) 207.607 217.47 3195 1 4.21e+29
#> Body.District2 29.657 40.32 2733 1 63.4
#> Congruency2 21.151 30.82 1783 1 18.6
#> Side2 24.979 35.16 1923 1 35
#> Body.District2:Congruency2 -5.658 1.02 3253 1 2.59
#> Body.District2:Side2 -0.831 6.03 2635 1 0.75
#> Congruency2:Side2 -0.583 9.05 2708 1 0.975
#> Body.District2:Congruency2:Side2 8.703 17.68 2784 1 0.826
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> sigmaC 75.8 0.0108 0.874 74.1 75.2 75.8 76.4 77.6 6548 1
#>
#>
#> Fixed Effects for the Patient
#>
#> mean se_mean sd 2.5% 25% 50% 75%
#> (Intercept) 394.3 0.103 6.52 381.3 390.0 394.5 398.77
#> Body.District2 42.8 0.114 7.19 28.9 37.9 42.5 47.70
#> Congruency2 46.6 0.116 7.31 31.9 41.7 46.7 51.44
#> Side2 50.7 0.114 7.23 36.9 45.6 50.7 55.42
#> Body.District2:Congruency2 -27.1 0.137 8.68 -44.0 -33.0 -27.1 -21.52
#> Body.District2:Side2 -22.3 0.132 8.33 -38.4 -27.8 -22.2 -16.63
#> Congruency2:Side2 -12.6 0.139 8.80 -30.1 -18.8 -12.4 -6.65
#> Body.District2:Congruency2:Side2 -12.5 0.160 10.09 -32.4 -19.5 -12.4 -5.58
#> 97.5% BF10
#> (Intercept) 406.67 4.92e+56
#> Body.District2 57.19 56187
#> Congruency2 60.76 1103949
#> Side2 65.29 5127730
#> Body.District2:Congruency2 -9.93 52.2
#> Body.District2:Side2 -6.30 31.6
#> Congruency2:Side2 4.28 2.58
#> Body.District2:Congruency2:Side2 7.04 2
#>
#>
#> Fixed Effects for the difference between the Patient and the Control Group
#>
#> mean se_mean sd 2.5% 25% 50% 75%
#> (Intercept) 192.09 0.136 7.77 176.93 186.9 192.07 197.44
#> Body.District2 18.56 0.137 8.01 3.08 13.0 18.60 23.81
#> Congruency2 30.03 0.134 7.55 15.06 25.0 30.10 34.98
#> Side2 30.77 0.133 7.71 15.41 25.6 30.77 35.77
#> Body.District2:Congruency2 -17.87 0.117 7.90 -33.26 -23.1 -17.97 -12.49
#> Body.District2:Side2 -17.83 0.108 7.59 -32.41 -23.0 -17.86 -12.77
#> Congruency2:Side2 -7.02 0.128 8.20 -23.03 -12.6 -7.03 -1.61
#> Body.District2:Congruency2:Side2 -16.47 0.125 8.45 -32.95 -22.2 -16.56 -10.90
#> 97.5% n_eff Rhat BF10
#> (Intercept) 207.115 3283 1 4.58e+27
#> Body.District2 34.365 3397 1 13.4
#> Congruency2 44.777 3190 1 347
#> Side2 46.207 3370 1 849
#> Body.District2:Congruency2 -2.687 4550 1 11.7
#> Body.District2:Side2 -2.639 4974 1 9.96
#> Congruency2:Side2 9.080 4117 1 1.17
#> Body.District2:Congruency2:Side2 0.374 4564 1 5.6
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> sigmaP 64.3 0.0381 2.63 59.3 62.5 64.2 66 69.7 4774 1
In the second and fourth part of the output, we can observe a
descriptive summary reporting the mean, the standard error, the standard
deviation, the \(2.5\%\), \(25%\), \(50\%\), \(75\%\) and \(97.5\%\) of the posterior distributions of
each coefficient. If we want the \(95\%\) Credible Interval, we can consider
only the \(2.5\%\) and \(97.5\%\) extremes. Then, two diagnostic
indexes are reported: the n_eff
parameter, that is the
ESS, and the Rhat
(\(\hat{R}\)). Finally, the Savage-Dickey
Bayes Factor is reported (BF10).
In the third part the diagnostic indexes are not reported because these coefficients are computed as marginal probabilities from the probabilities summarized in the second and fourth part.
summary.BMSC
outputThe first step should be controlling the diagnostic indexes.
In this model, all n_eff
are greater than the \(10\%\) of the total iterations (default
iterations: 4000, default warmup iterations: 2000, default chains: 4 =
800). Also, all \(\hat{R}s < 1.1\).
Finally, we already saw that the Posterior Predictive P-values are
showing that the model is representative of the data.
Then, observing what the fixed effects of the Control group are showing is important before of seeing the differences with the single case.
In this analysis, there are 5 fixed effects which \(BF_{10}\) is greater than 3 (Raftery 1995).
<- sum_mdl[[1]][sum_mdl[[1]]$BF10 > 3,c("BF10","mean","2.5%","97.5%")]
tmp
colnames(tmp) <- c("$BF_{10}$", "$\\mu$", "low $95\\%~CI$", "up $95\\%~CI$")
::kable(
knitr
tmp,digits = 3
)
\(BF_{10}\) | \(\mu\) | low \(95\%~CI\) | up \(95\%~CI\) | |
---|---|---|---|---|
(Intercept) | 4.209343e+29 | 202.250 | 186.805 | 217.474 |
Body.District2 | 63.36141 | 24.205 | 8.306 | 40.317 |
Congruency2 | 18.62051 | 16.552 | 3.825 | 30.817 |
Side2 | 34.96145 | 19.904 | 5.274 | 35.161 |
We can have a general overview of the coefficients of the model with
the plot.BMSC
function.
plot( mdl , who = "control" )
The interaction between Body District and Congruency needs a further
analysis to better understand the phenomenon. It comes useful the
function pairwise.BMSC
.
<- pairwise.BMSC(mdl = mdl , contrast = "Body.District2:Congruency2" ,
pp who = "control")
print( pp , digits = 3 )
#>
#> Pairwise Bayesian Multilevel Single Case contrasts of coefficients divided by Body.District2:Congruency2
#>
#>
#>
#> Marginal distributions
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% BF10 (not zero)
#> FOOT Incongruent 219 0.157 9.92 199 212 219 225 239 1.38e+25
#> FOOT Congruent 202 0.124 7.82 187 197 202 208 217 4.21e+29
#> HAND Incongruent 234 0.203 12.82 209 225 234 242 259 5.75e+18
#> HAND Congruent 226 0.166 10.50 206 219 227 233 247 7.27e+19
#>
#>
#>
#> Table of contrasts
#>
#> mean se_mean sd 2.5% 25% 50%
#> FOOT Incongruent - FOOT Congruent 16.55 0.110 6.95 3.82 11.66 16.33
#> FOOT Incongruent - HAND Incongruent -14.93 0.147 9.31 -33.11 -21.16 -15.13
#> FOOT Incongruent - HAND Congruent -7.65 0.163 10.30 -27.07 -14.76 -7.79
#> FOOT Congruent - HAND Incongruent -31.48 0.178 11.26 -53.88 -38.89 -31.46
#> FOOT Congruent - HAND Congruent -24.21 0.128 8.06 -40.32 -29.66 -24.24
#> HAND Incongruent - HAND Congruent 7.28 0.124 7.85 -6.72 1.65 6.84
#> 75% 97.5% BF10
#> FOOT Incongruent - FOOT Congruent 21.151 30.82 18.19
#> FOOT Incongruent - HAND Incongruent -8.713 3.77 3.27
#> FOOT Incongruent - HAND Congruent -0.574 12.82 1.38
#> FOOT Congruent - HAND Incongruent -23.938 -9.61 68.69
#> FOOT Congruent - HAND Congruent -18.842 -8.31 56.38
#> HAND Incongruent - HAND Congruent 12.445 23.50 1.03
The output of this function is divided in two parts:
It is also possible to plot the results of this function with the use
of plot.pairwise.BMSC
.
plot( pp )
#> [[1]]
#>
#> [[2]]
Finally, it is possible to plot marginal posterior distributions for each effects with \(BF_{10} > 3\).
<- pairwise.BMSC(mdl , contrast = "Body.District2" , who = "control" )
p1
plot( p1 )[[1]] +
ggtitle("Body District" , subtitle = "Marginal effects")
plot( p1 )[[2]] +
ggtitle("Body District" , subtitle = "Contrasts")
<- pairwise.BMSC(mdl , contrast = "Congruency2" , who = "control" )
p2
plot( p2 )[[1]] +
ggtitle("Congruency" , subtitle = "Marginal effects")
plot( p2 )[[2]] +
ggtitle("Congruency" , subtitle = "Contrasts")
<- pairwise.BMSC(mdl , contrast = "Side2" , who = "control" )
p3
plot( p3 )[[1]] +
ggtitle("Side" , subtitle = "Marginal effects")
plot( p3 )[[2]] +
ggtitle("Side" , subtitle = "Contrasts")
Finally, the difference between the Control Group and the Single Case is of interest.
A general plot can be obtained in the following way, plotting both the Control Group and the Single Case:
plot( mdl ) +
theme_bw( base_size = 18 )+
theme( legend.position = "bottom",
legend.direction = "horizontal")
or plotting only the difference
plot( mdl ,who = "delta" ) +
theme_bw( base_size = 18 )
The relevant coefficients are:
<- sum_mdl[[3]][sum_mdl[[3]]$BF10 > 3,c("BF10","mean","2.5%","97.5%")]
tmp
colnames(tmp) <- c("$BF_{10}$", "$\\mu$", "low $95\\%~CI$", "up $95\\%~CI$")
::kable(
knitr
tmp,digits = 3
)
\(BF_{10}\) | \(\mu\) | low \(95\%~CI\) | up \(95\%~CI\) | |
---|---|---|---|---|
(Intercept) | 4.575384e+27 | 192.094 | 176.935 | 207.115 |
Body.District2 | 13.41511 | 18.559 | 3.085 | 34.365 |
Congruency2 | 346.7337 | 30.034 | 15.063 | 44.777 |
Side2 | 849.4772 | 30.769 | 15.410 | 46.207 |
Body.District2:Congruency2 | 11.69081 | -17.865 | -33.260 | -2.687 |
Body.District2:Side2 | 9.958894 | -17.834 | -32.406 | -2.639 |
Body.District2:Congruency2:Side2 | 5.596429 | -16.468 | -32.946 | 0.374 |
The Intercept coefficient is showing us that the single case is generally slower than the Control Sample (generally speaking, when you analyse healthy controls against a single case with a specific disease, the single case is slower).
All the main effects can be further analysed by simply looking at
their estimates (knowing the contrast matrix and the direction of the
estimate you can understand which level is greater than the other), or
by means of the pairwise.BMSC
function, if you also want
marginal effects and automatic plots.
The interactions require the use of the pairwise.BMSC
function.
<- pairwise.BMSC(mdl , contrast = "Body.District2:Congruency2" ,
p4 who = "delta")
print( p4 , digits = 3 )
#>
#> Pairwise Bayesian Multilevel Single Case contrasts of coefficients divided by Body.District2:Congruency2
#>
#>
#>
#> Marginal distributions
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% BF10 (not zero)
#> FOOT Congruent 192 0.123 7.77 177 187 192 197 207 4.58e+27
#> FOOT Incongruent 222 0.162 10.22 202 215 222 229 242 1.48e+23
#> HAND Incongruent 223 0.212 13.42 196 214 223 232 249 6.68e+19
#> HAND Congruent 211 0.170 10.74 190 203 211 218 231 3.18e+17
#>
#>
#>
#> Table of contrasts
#>
#> mean se_mean sd 2.5% 25% 50%
#> FOOT Congruent - FOOT Incongruent -30.034 0.119 7.55 -44.78 -34.98 -30.099
#> FOOT Congruent - HAND Incongruent -30.728 0.189 11.93 -53.81 -38.76 -30.725
#> FOOT Congruent - HAND Congruent -18.559 0.127 8.01 -34.36 -23.81 -18.599
#> FOOT Incongruent - HAND Incongruent -0.694 0.163 10.30 -21.20 -7.62 -0.745
#> FOOT Incongruent - HAND Congruent 11.475 0.170 10.74 -9.17 4.27 11.558
#> HAND Incongruent - HAND Congruent 12.169 0.152 9.62 -6.86 5.85 12.116
#> 75% 97.5% BF10
#> FOOT Congruent - FOOT Incongruent -24.98 -15.06 273.48
#> FOOT Congruent - HAND Incongruent -22.63 -6.68 29.91
#> FOOT Congruent - HAND Congruent -13.04 -3.08 13.37
#> FOOT Incongruent - HAND Incongruent 6.32 19.99 1.06
#> FOOT Incongruent - HAND Congruent 18.59 32.80 1.87
#> HAND Incongruent - HAND Congruent 18.50 31.18 2.23
The pairwise.BMSC
function shows that in all cases the
marginal effects of the RTs where greater than zero, but the differences
where present only in the comparison between FOOT Congruent and the
other cases.
plot( p4 , type = "interval")
#> [[1]]
#>
#> [[2]]
plot( p4 , type = "area")
#> [[1]]
#>
#> [[2]]
plot( p4 , type = "hist")
#> [[1]]
#>
#> [[2]]
In this case we can observe that the single case was more facilitated by the FOOT Congruent condition than the Control Group.
If the interpretation of the results is difficult, it can be useful look what happens in the Single Case marginal effects.
<- pairwise.BMSC(mdl , contrast = "Body.District2:Congruency2" ,
p5 who = "singlecase")
plot( p5 , type = "hist")[[1]]
<- pairwise.BMSC(mdl , contrast = "Body.District2:Side2" , who = "delta")
p6
print( p6 , digits = 3 )
#>
#> Pairwise Bayesian Multilevel Single Case contrasts of coefficients divided by Body.District2:Side2
#>
#>
#>
#> Marginal distributions
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% BF10 (not zero)
#> FOOT Left 192 0.123 7.77 177 187 192 197 207 4.58e+27
#> FOOT Right 223 0.165 10.45 202 216 223 230 243 4.86e+20
#> HAND Left 211 0.170 10.74 190 203 211 218 231 3.18e+17
#> HAND Right 224 0.221 13.94 196 214 223 233 251 1.31e+16
#>
#>
#>
#> Table of contrasts
#>
#> mean se_mean sd 2.5% 25% 50% 75%
#> FOOT Left - FOOT Right -30.769 0.122 7.71 -46.21 -35.77 -30.771 -25.57
#> FOOT Left - HAND Left -18.559 0.127 8.01 -34.36 -23.81 -18.599 -13.04
#> FOOT Left - HAND Right -31.494 0.192 12.17 -54.94 -39.68 -31.622 -23.22
#> FOOT Right - HAND Left 12.210 0.174 11.01 -9.23 4.96 12.320 19.59
#> FOOT Right - HAND Right -0.725 0.163 10.34 -21.11 -7.61 -0.613 6.23
#> HAND Left - HAND Right -12.935 0.155 9.82 -32.48 -19.51 -12.890 -6.32
#> 97.5% BF10
#> FOOT Left - FOOT Right -15.41 1104.54
#> FOOT Left - HAND Left -3.08 13.37
#> FOOT Left - HAND Right -8.12 40.24
#> FOOT Right - HAND Left 33.42 2.06
#> FOOT Right - HAND Right 19.36 1.03
#> HAND Left - HAND Right 5.99 2.32
plot( p6 , type = "hist")[[1]] +
theme_bw( base_size = 18)+
theme( strip.text.y = element_text( angle = 0 ) )
In this case, we can see that the left - right difference in the single case is always present, with faster RTs in the left foot than in the other cases.
<- pairwise.BMSC(mdl ,
p7 contrast = "Body.District2:Congruency2:Side2" ,
who = "delta")
print( p7 , digits = 3 )
#>
#> Pairwise Bayesian Multilevel Single Case contrasts of coefficients divided by Body.District2:Congruency2:Side2
#>
#>
#>
#> Marginal distributions
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5%
#> FOOT Congruent Left 192 0.123 7.77 177 187 192 197 207
#> FOOT Incongruent Right 246 0.215 13.60 219 237 246 255 272
#> FOOT Incongruent Left 222 0.162 10.22 202 215 222 229 242
#> FOOT Congruent Right 223 0.165 10.45 202 216 223 230 243
#> HAND Incongruent Left 223 0.212 13.42 196 214 223 232 249
#> HAND Congruent Right 224 0.221 13.94 196 214 223 233 251
#> HAND Congruent Left 211 0.170 10.74 190 203 211 218 231
#> HAND Incongruent Right 212 0.273 17.28 178 200 212 224 246
#> BF10 (not zero)
#> FOOT Congruent Left 4.58e+27
#> FOOT Incongruent Right 2.42e+19
#> FOOT Incongruent Left 1.48e+23
#> FOOT Congruent Right 4.86e+20
#> HAND Incongruent Left 6.68e+19
#> HAND Congruent Right 1.31e+16
#> HAND Congruent Left 3.18e+17
#> HAND Incongruent Right 3.14e+13
#>
#>
#>
#> Table of contrasts
#>
#> mean se_mean sd 2.5%
#> FOOT Congruent Left - FOOT Incongruent Right -53.7876 0.193 12.21 -77.68
#> FOOT Congruent Left - FOOT Incongruent Left -30.0338 0.119 7.55 -44.78
#> FOOT Congruent Left - FOOT Congruent Right -30.7692 0.122 7.71 -46.21
#> FOOT Congruent Left - HAND Incongruent Left -30.7277 0.189 11.93 -53.81
#> FOOT Congruent Left - HAND Congruent Right -31.4940 0.192 12.17 -54.94
#> FOOT Congruent Left - HAND Congruent Left -18.5590 0.127 8.01 -34.36
#> FOOT Congruent Left - HAND Incongruent Right -20.1792 0.255 16.12 -52.47
#> FOOT Incongruent Right - FOOT Incongruent Left 23.7537 0.164 10.35 2.84
#> FOOT Incongruent Right - FOOT Congruent Right 23.0183 0.159 10.07 3.18
#> FOOT Incongruent Right - HAND Incongruent Left 23.0599 0.225 14.22 -4.97
#> FOOT Incongruent Right - HAND Congruent Right 22.2936 0.220 13.92 -4.07
#> FOOT Incongruent Right - HAND Congruent Left 35.2286 0.223 14.13 7.47
#> FOOT Incongruent Right - HAND Incongruent Right 33.6083 0.203 12.86 8.86
#> FOOT Incongruent Left - FOOT Congruent Right -0.7354 0.165 10.44 -21.52
#> FOOT Incongruent Left - HAND Incongruent Left -0.6939 0.163 10.30 -21.20
#> FOOT Incongruent Left - HAND Congruent Right -1.4602 0.218 13.76 -28.01
#> FOOT Incongruent Left - HAND Congruent Left 11.4748 0.170 10.74 -9.17
#> FOOT Incongruent Left - HAND Incongruent Right 9.8546 0.243 15.38 -20.54
#> FOOT Congruent Right - HAND Incongruent Left 0.0415 0.215 13.60 -25.85
#> FOOT Congruent Right - HAND Congruent Right -0.7248 0.163 10.34 -21.11
#> FOOT Congruent Right - HAND Congruent Left 12.2102 0.174 11.01 -9.23
#> FOOT Congruent Right - HAND Incongruent Right 10.5900 0.239 15.13 -18.95
#> HAND Incongruent Left - HAND Congruent Right -0.7663 0.208 13.16 -26.76
#> HAND Incongruent Left - HAND Congruent Left 12.1687 0.152 9.62 -6.86
#> HAND Incongruent Left - HAND Incongruent Right 10.5485 0.202 12.78 -15.08
#> HAND Congruent Right - HAND Congruent Left 12.9350 0.155 9.82 -5.99
#> HAND Congruent Right - HAND Incongruent Right 11.3148 0.196 12.38 -13.27
#> HAND Congruent Left - HAND Incongruent Right -1.6202 0.232 14.69 -31.20
#> 25% 50% 75% 97.5%
#> FOOT Congruent Left - FOOT Incongruent Right -61.927 -53.675 -45.63 -29.69
#> FOOT Congruent Left - FOOT Incongruent Left -34.984 -30.099 -24.98 -15.06
#> FOOT Congruent Left - FOOT Congruent Right -35.772 -30.771 -25.57 -15.41
#> FOOT Congruent Left - HAND Incongruent Left -38.764 -30.725 -22.63 -6.68
#> FOOT Congruent Left - HAND Congruent Right -39.684 -31.622 -23.22 -8.12
#> FOOT Congruent Left - HAND Congruent Left -23.813 -18.599 -13.04 -3.08
#> FOOT Congruent Left - HAND Incongruent Right -30.906 -20.355 -9.40 11.92
#> FOOT Incongruent Right - FOOT Incongruent Left 16.797 24.051 30.59 44.02
#> FOOT Incongruent Right - FOOT Congruent Right 16.473 23.039 29.78 42.58
#> FOOT Incongruent Right - HAND Incongruent Left 13.422 23.041 32.91 51.05
#> FOOT Incongruent Right - HAND Congruent Right 12.954 21.825 31.63 50.18
#> FOOT Incongruent Right - HAND Congruent Left 25.952 34.950 44.59 63.34
#> FOOT Incongruent Right - HAND Incongruent Right 24.735 33.725 42.30 58.79
#> FOOT Incongruent Left - FOOT Congruent Right -7.756 -0.800 6.22 19.60
#> FOOT Incongruent Left - HAND Incongruent Left -7.622 -0.745 6.32 19.99
#> FOOT Incongruent Left - HAND Congruent Right -10.869 -1.647 8.03 25.65
#> FOOT Incongruent Left - HAND Congruent Left 4.266 11.558 18.59 32.80
#> FOOT Incongruent Left - HAND Incongruent Right -0.571 9.806 20.22 39.64
#> FOOT Congruent Right - HAND Incongruent Left -9.159 0.189 8.94 27.30
#> FOOT Congruent Right - HAND Congruent Right -7.613 -0.613 6.23 19.36
#> FOOT Congruent Right - HAND Congruent Left 4.961 12.320 19.59 33.42
#> FOOT Congruent Right - HAND Incongruent Right 0.229 10.446 20.46 40.37
#> HAND Incongruent Left - HAND Congruent Right -9.407 -0.805 7.73 25.79
#> HAND Incongruent Left - HAND Congruent Left 5.852 12.116 18.50 31.18
#> HAND Incongruent Left - HAND Incongruent Right 2.022 10.846 19.09 35.23
#> HAND Congruent Right - HAND Congruent Left 6.319 12.890 19.51 32.48
#> HAND Congruent Right - HAND Incongruent Right 2.858 11.075 19.69 35.80
#> HAND Congruent Left - HAND Incongruent Right -11.635 -1.425 8.42 26.58
#> BF10
#> FOOT Congruent Left - FOOT Incongruent Right 3225.05
#> FOOT Congruent Left - FOOT Incongruent Left 273.48
#> FOOT Congruent Left - FOOT Congruent Right 1104.54
#> FOOT Congruent Left - HAND Incongruent Left 29.91
#> FOOT Congruent Left - HAND Congruent Right 40.24
#> FOOT Congruent Left - HAND Congruent Left 13.37
#> FOOT Congruent Left - HAND Incongruent Right 3.49
#> FOOT Incongruent Right - FOOT Incongruent Left 15.09
#> FOOT Incongruent Right - FOOT Congruent Right 13.84
#> FOOT Incongruent Right - HAND Incongruent Left 5.49
#> FOOT Incongruent Right - HAND Congruent Right 4.96
#> FOOT Incongruent Right - HAND Congruent Left 33.14
#> FOOT Incongruent Right - HAND Incongruent Right 48.31
#> FOOT Incongruent Left - FOOT Congruent Right 1.02
#> FOOT Incongruent Left - HAND Incongruent Left 1.06
#> FOOT Incongruent Left - HAND Congruent Right 1.41
#> FOOT Incongruent Left - HAND Congruent Left 1.87
#> FOOT Incongruent Left - HAND Incongruent Right 1.87
#> FOOT Congruent Right - HAND Incongruent Left 1.30
#> FOOT Congruent Right - HAND Congruent Right 1.03
#> FOOT Congruent Right - HAND Congruent Left 2.06
#> FOOT Congruent Right - HAND Incongruent Right 1.87
#> HAND Incongruent Left - HAND Congruent Right 1.31
#> HAND Incongruent Left - HAND Congruent Left 2.23
#> HAND Incongruent Left - HAND Incongruent Right 1.83
#> HAND Congruent Right - HAND Congruent Left 2.35
#> HAND Congruent Right - HAND Incongruent Right 1.87
#> HAND Congruent Left - HAND Incongruent Right 1.49
plot( p7 , type = "hist")[[1]] +
theme_bw( base_size = 18)+
theme( strip.text.y = element_text( angle = 0 ) )
Here we can see that the effect was pushed by the facilitation that the single case had in the Left Congruent Foot condition compared to the Control Group.
The bmscstan package has wrapper functions to
interface with the loo
package, to diagnostic and compare
BMSC models.
Leaving-One-Out scores, diagnostics and comparisons are separately computed for the Control group and the Single Case data.
In order to see the Leaving-One-Out and the Pareto smoothed
importance sampling (PSIS), it is possible to use the function
loo.BMSC
:
print( loo1 <- BMSC_loo( mdl ) )
#>
#> Leave-One-Out Cross-Validation using PSIS-LOO for the single case
#>
#>
#> Computed from 4000 by 449 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -2509.0 15.2
#> p_loo 6.0 0.4
#> looic 5018.0 30.4
#> ------
#> Monte Carlo SE of elpd_loo is 0.0.
#>
#> All Pareto k estimates are good (k < 0.5).
#> See help('pareto-k-diagnostic') for details.
#>
#> Leave-One-Out Cross-Validation using PSIS-LOO for the control group
#>
#>
#> Computed from 4000 by 3933 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -22637.5 49.8
#> p_loo 70.3 1.8
#> looic 45275.0 99.7
#> ------
#> Monte Carlo SE of elpd_loo is 0.1.
#>
#> All Pareto k estimates are good (k < 0.5).
#> See help('pareto-k-diagnostic') for details.
plot( loo1 )
Model comparison can be done by means of the
BMSC_loo_compare
function:
<- BMSC(formula = RT ~ 1 +
mdl.null * Side | BD_ID),
(Congruency data_ctrl = data.ctrl,
data_sc = data.pt,
cores = 1,
chains = 2,
seed = 2021)
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.001076 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 10.76 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 1: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 1: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 1: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 1: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 1: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 152.371 seconds (Warm-up)
#> Chain 1: 163.833 seconds (Sampling)
#> Chain 1: 316.204 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 0.000684 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 6.84 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 2: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 2: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 2: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 2: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 2: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 2: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 2: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 176.451 seconds (Warm-up)
#> Chain 2: 168.809 seconds (Sampling)
#> Chain 2: 345.26 seconds (Total)
#> Chain 2:
print( loo2 <- BMSC_loo( mdl.null ) )
#>
#> Leave-One-Out Cross-Validation using PSIS-LOO for the single case
#>
#>
#> Computed from 4000 by 449 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -2484.7 16.4
#> p_loo 1.9 0.2
#> looic 4969.4 32.7
#> ------
#> Monte Carlo SE of elpd_loo is 0.0.
#>
#> All Pareto k estimates are good (k < 0.5).
#> See help('pareto-k-diagnostic') for details.
#>
#> Leave-One-Out Cross-Validation using PSIS-LOO for the control group
#>
#>
#> Computed from 4000 by 3933 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -22636.0 49.7
#> p_loo 57.0 1.5
#> looic 45272.1 99.4
#> ------
#> Monte Carlo SE of elpd_loo is 0.1.
#>
#> All Pareto k estimates are good (k < 0.5).
#> See help('pareto-k-diagnostic') for details.
plot( loo2 )
BMSC_loo_compare( list( loo1, loo2 ) )
#>
#> Leave-One-Out Cross-Validation model comparison for the single case
#>
#> elpd_diff se_diff
#> model2 0.0 0.0
#> model1 -24.3 7.9
#>
#> Leave-One-Out Cross-Validation model comparison for the control group
#>
#> elpd_diff se_diff
#> model2 0.0 0.0
#> model1 -24.3 7.9
Further details on LOO, PSIS and their use can be found in the loo package and in Vehtari, Gelman, and Gabry (2017) and Vehtari et al. (2015).
In this section, a brief example on how to use the package for binomial data.
We start simulating the data.
######################################
# simulation of controls' group data
######################################
# Number of levels for each condition and trials
<- 2
NCond <- 20
Ntrials <- 40
NSubjs
<- c( 0.5 , 0 )
betas
<- expand.grid(
data.sim trial = 1:Ntrials,
ID = factor(1:NSubjs),
Cond = factor(1:NCond)
)
### d.v. generation
<- rep( times = nrow(data.sim) , NA )
y
# cheap simulation of individual random intercepts
set.seed(1)
<- rnorm(NSubjs , sd = 0.1)
rsubj
for( i in 1:length( levels( data.sim$ID ) ) ){
<- which( data.sim$ID == as.character(i) )
sel
<- model.matrix(~ 1 + Cond , data = data.sim[ sel , ] )
mm
set.seed(1 + i)
<- mm %*% as.matrix(betas + rsubj[i]) +
y[sel] rnorm( n = Ntrials * NCond )
}
$y <- y
data.sim$bin <- sapply(
data.sim::invlogit(data.sim$y),
LaplacesDemonfunction(x) rbinom( 1, 1, x)
)
<- aggregate( bin ~ Cond * ID, data = data.sim, FUN = sum)
data.sim.bin $n <- aggregate( bin ~ Cond * ID,
data.sim.bindata = data.sim, FUN = length)$bin
######################################
# simulation of patient data
######################################
<- c( 0 , 2 )
betas.pt
<- expand.grid(
data.pt trial = 1:Ntrials,
Cond = factor(1:NCond)
)
### d.v. generation
<- model.matrix(~ 1 + Cond , data = data.pt )
mm
set.seed(5)
$y <- (mm %*% as.matrix(betas.pt + betas) +
data.ptrnorm( n = Ntrials * NCond ))[,1]
$bin <- sapply(
data.pt::invlogit(data.pt$y),
LaplacesDemonfunction(x) rbinom( 1, 1, x)
)
<- aggregate( bin ~ Cond, data = data.pt, FUN = sum)
data.pt.bin $n <- aggregate( bin ~ Cond,
data.pt.bindata = data.pt, FUN = length)$bin
plot(x = data.sim.bin$Cond, y = data.sim.bin$bin, ylim = c(0,20))
points(x = data.pt.bin$Cond, y = data.pt.bin$bin, col = "red")
The boxplot represents the control participants, the red dot the single case.
Now, we can specify the model:
cbind(bin, n) ~ Cond
The right-hand side of the formula follows the usual lmer- and
brms-like syntax. In the left-hand side of the formula,
brms
and lme4
have divergent notations.
In future, the bmscstan
package will be able to use both
notations, for the moment it is necessary the lme4
notation
cbind(bin, n)
where:
bin
is the number of observationsn
is the total number of trials<- BMSC(formula = cbind(bin, n) ~ 1 + Cond,
mdlBin data_ctrl = data.sim.bin, data_sc = data.pt.bin, seed = 2022,
chains = 2,
family = "binomial", cores = 1)
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 6.7e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.67 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 1: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 1: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 1: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 1: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 1: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 1: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 1: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 1: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 1.03 seconds (Warm-up)
#> Chain 1: 0.822 seconds (Sampling)
#> Chain 1: 1.852 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 3.9e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.39 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
#> Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
#> Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
#> Chain 2: Iteration: 1200 / 4000 [ 30%] (Warmup)
#> Chain 2: Iteration: 1600 / 4000 [ 40%] (Warmup)
#> Chain 2: Iteration: 2000 / 4000 [ 50%] (Warmup)
#> Chain 2: Iteration: 2001 / 4000 [ 50%] (Sampling)
#> Chain 2: Iteration: 2400 / 4000 [ 60%] (Sampling)
#> Chain 2: Iteration: 2800 / 4000 [ 70%] (Sampling)
#> Chain 2: Iteration: 3200 / 4000 [ 80%] (Sampling)
#> Chain 2: Iteration: 3600 / 4000 [ 90%] (Sampling)
#> Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 1.075 seconds (Warm-up)
#> Chain 2: 0.783 seconds (Sampling)
#> Chain 2: 1.858 seconds (Total)
#> Chain 2:
print( summary( mdlBin ) , digits = 3 )
#>
#> Bayesian Multilevel Single Case model
#>
#> cbind(bin, n) ~ 1 + Cond
#>
#> [1] "Priors for the regression coefficients: normal distribution; Dispersion parameter (scale or sigma): 10"
#>
#>
#> Fixed Effects for the Control Group
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
#> (Intercept) 0.41315 0.00176 0.0709 0.278 0.3649 0.4106 0.4602 0.556 1617
#> Cond2 0.00683 0.00249 0.0993 -0.191 -0.0622 0.0115 0.0729 0.201 1594
#> Rhat BF10
#> (Intercept) 1 11519
#> Cond2 1 0.011
#>
#> NULL
#>
#>
#> Fixed Effects for the Patient
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% BF10
#> (Intercept) 0.224 0.00729 0.461 -0.653 -0.0885 0.214 0.524 1.15 0.0484
#> Cond2 10.291 0.09191 5.813 2.762 5.8346 8.987 13.624 24.76 555
#>
#>
#> Fixed Effects for the difference between the Patient and the Control Group
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> (Intercept) -0.189 0.0101 0.467 -1.08 -0.504 -0.196 0.119 0.771 2146 1
#> Cond2 10.284 0.1692 5.811 2.69 5.845 8.968 13.619 24.747 1180 1
#> BF10
#> (Intercept) 0.0514
#> Cond2 699
#>
#> NULL
In this vignette we have seen how to use the package bmscstan and its functions to analyse and make sense of Single Case data.
The output of the main functions is rich of information, and the Bayesian Inference can be done by taking into account the Savage-Dickey \(BF_{10}\), or the \(95\%\) CI (see Kruschke 2014 for further details).
In this vignette there is almost no discussion concerning how to test the Single Case fixed effects (third part of the main output), but it was used to better understand what happens in the differences between the single case and the control group.
However, if your hypotheses focus on the behaviour of the patient, and not only on the differences between single case and the control group, it will be important to analyse in detail also that part.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.