The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Confidence Intervals for a Binomial Proportion
Version: 1.2
Date: 2024-11-25
Author: Michail Tsagris [aut, cre]
Maintainer: Michail Tsagris <mtsagris@uoc.gr>
Depends: R (≥ 4.3.0)
Imports: stats
Suggests: Rfast, Rfast2
Description: Twelve confidence intervals for one binomial proportion or a vector of binomial proportions are computed. The confidence intervals are: Jeffreys, Wald, Wald corrected, Wald, Blyth and Still, Agresti and Coull, Wilson, Score, Score corrected, Wald logit, Wald logit corrected, Arcsine and Exact binomial. References include, among others: Vollset, S. E. (1993). "Confidence intervals for a binomial proportion". Statistics in Medicine, 12(9): 809-824. <doi:10.1002/sim.4780120902>.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Packaged: 2024-11-25 12:22:12 UTC; mtsag
Repository: CRAN
Date/Publication: 2024-11-25 12:50:08 UTC

Confidence Intervals for a Binomial Proportion.

Description

Functions to compute 12 confidence intervals for a binomial proportion.

Details

Package: binomCI
Type: Package
Version: 1.2
Date: 2024-11-25
License: GPL-2

Maintainers

Michail Tsagris mtsagris@uoc.gr.

Note

I would like to express my acknowledgements to Marc Girondot for spotting an error in the "Wilson" method in two extreme cases, when x=1 and when n-x=1. He also proposed a modification that exists in the package "Hmisc" and the relevant paper to cite is Agresti & Coull (1998).

Author(s)

Michail Tsagris mtsagris@uoc.gr.

References

Agresti, A. & Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4), 280–288.

Agresti, A. & Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician, 52(2): 119–126.

Brown, L. D., Cai, T. T. & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2): 101-133.

Brown, L. D., Cai, T. T. & DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30(1): 160-201.

Cameron, E. (2011). On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach. Publications of the Astronomical Society of Australia, 28(2): 128–139.

Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17(8): 857–872.

Pan, W. (2002). Approximate confidence intervals for one proportion and difference of two proportions. Computational statistics & Data Analysis, 40(1): 143-157.

Pires, A. M. & Amado, C. (2008). Interval estimators for a binomial proportion: Comparison of twenty methods. REVSTAT-Statistical Journal, 6(2): 165-197.

Ranucci, G. (2009). Binomial and ratio-of-Poisson-means frequentist confidence intervals applied to the error evaluation of cut efficiencies. arXiv preprint arXiv:0901.4845.

Sauro, J. & Lewis, J. R. (2005, September). Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 49, No. 24, pp. 2100-2103). Sage CA: Los Angeles, CA: SAGE Publications.

Somerville, M. C. & Brown, R. S. (2013). Exact likelihood ratio and score confidence intervals for the binomial proportion. Pharmaceutical Statistics, 12(3): 120-128.

Thulin, Mans. The cost of using exact confidence intervals for a binomial proportion. (2014): 817-840. Electronic Journal of Statistics 8(1): 817-840.

Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine, 12(9): 809-824.


Confidence Intervals for a Binomial Proportion.

Description

Confidence Intervals for a Binomial Proportion.

Usage

binomCI(x, n, a = 0.05)

Arguments

x

The number of successes.

n

The number of trials.

a

The significance level to compute the (1-\alpha)\% confidence intervals.

Details

The confidence intervals are:

Jeffreys:

\left[ F(\alpha/2; x+0.5, n-x+0.5), F(1-\alpha/2; x+0.5, n-x+0.5) \right],

where F(\alpha, a, b) denotes the \alpha quantile of the Beta distribution with parameters a and b, Be(a, b).

Wald:

\left[ \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right],

where \hat{p}=\frac{x}{n} and Z_{1-\alpha/2} denotes the 1-\alpha/2 quantile of the standard normal distribution. If \hat{p}=0 the interval becomes (0 , 1 - e^{\frac{1}{n}\log({\alpha}{2})}) and if \hat{p}=1 the interval becomes (e^{\frac{1}{n}\log({\alpha}{2})}, 1).

Wald corrected:

\left[ \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} - \frac{0.5}{n}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} + \frac{0.5}{n} \right],

and if \hat{p}=0 or \hat{p}=1 the previous (Wald) adjustment applies.

Wald BS:

\left[ \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n-Z_{1-\alpha/2}-2Z_{1-\alpha/2}/n-1/n}} - \frac{0.5}{n}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n-Z_{1-\alpha/2}-2Z_{1-\alpha/2}/n-1/n}} + \frac{0.5}{n} \right],

and if \hat{p}=0 or \hat{p}=1 the previous (Wald) adjustment applies.

Agresti and Coull:

\left[ \hat{\theta} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n+4}}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n+4}} \right],

where \hat{\theta}=\frac{x+2}{n+4}.

Wilson:

\left[ \frac{x_b}{n_b} - \frac{Z_{1-\alpha/2}\sqrt{n}}{n_b} \times \sqrt{\hat{p}(1-\hat{p})+Z_{1-\alpha/2}/4}, \frac{x_b}{n_b} + \frac{Z_{1-\alpha/2}\sqrt{n}}{n_b} \times \sqrt{\hat{p}(1-\hat{p})+Z_{1-\alpha/2}/4} \right],

where x_b=x+Z_{1-\alpha/2}^2/2 and n_b=n+Z_{1-\alpha/2}^2.

Score:

\left[ \frac{x+Z_{1-\alpha/2}^2-c}{n+Z_{1-\alpha/2}^2} , \frac{x+Z_{1-\alpha/2}^2+c}{n+Z_{1-\alpha/2}^2} \right],

where c=Z_{1-\alpha/2}\sqrt{x-x^2/n+Z_{1-\alpha/2}^2/4}.

Score corrected:

\left[ \frac{\ell_1}{n+Z_{1-\alpha/2}} , \frac{\ell_2}{n+Z_{1-\alpha/2}} \right],

where \ell_1=b_1+0.5Z_{1-\alpha/2}^2-Z_{1-\alpha/2}\sqrt{b_1-b_1^2/n+0.25Z_{1-\alpha/2}^2}, \ell_2=b_2+0.5Z_{1-\alpha/2}^2+Z_{1-\alpha/2}\sqrt{b_2-b_2^2/n+0.25Z_{1-\alpha/2}^2} and b_1=x-0.5, b_2=x+0.5.

Wald-logit:

\left[ 1-(1+e^{b-c})^{-1}, 1-(1+e^{b+c})^{-1} \right],

where b=\log(\frac{x}{n-x}) and c=\frac{Z_{1-\alpha/2}}{\sqrt{n\hat{p}(1-\hat{p})}}. If \hat{p}=0 or \hat{p}=1 the previous (Wald) adjustment applies.

Wald-logit corrected:

\left[ 1-(1+e^{b-c})^{-1}, 1-(1+e^{b+c})^{-1} \right],

where b=\log(\frac{\hat{p}_b}{\hat{q}_b}), \hat{p}_b=x+0.5, \hat{q}_b=n-x+0.5 and c=\frac{Z_{1-\alpha/2}}{\sqrt{(n+1)\frac{\hat{p}_b}{n+1}(1-\frac{\hat{p}_b}{n+1})}}.

Arcsine:

\left\lbrace \sin^2\left[sin^{-1}(\sqrt{\hat{p}})-0.5\frac{Z_{1-\alpha/2}}{\sqrt{n}}\right], \sin^2\left[sin^{-1}(\sqrt{\hat{p}})+0.5\frac{Z_{1-\alpha/2}}{\sqrt{n}}\right] \right\rbrace.

If \hat{p}=0 or \hat{p}=1 the previous (Wald) adjustment applies.

Exact binomial:

\left[ (1+\frac{a_1}{d_1})^{-1}, (1+\frac{a_2}{d_2})^{-1} \right],

where a_1=n-x+1, a_2=a_1-1, d_1=x-F(\alpha/2,2x,2a_1), d_2=(x+1)F(1-\alpha/2,2(x+1),2a_2) and F(\alpha,a,b) denotes the \alpha quantile of the F distribution with degrees of freedom a and b, F(a, b).

Value

A list including:

prop

The proportion.

ci

A matrix with 12 rows containing the 12 different (1-\alpha)\% confidence intervals.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

binomCIs

Examples

binomCI(45, 100)

Confidence Intervals for many Binomial Proportions.

Description

Confidence Intervals for many Binomial Proportions.

Usage

binomCIs(x, n, a = 0.05)

Arguments

x

A vector with the number of successes.

n

A vector with the number of trials.

a

The significance level to compute the (1-\alpha)\% confidence intervals.

Value

A list with the the first element being the vector with the proportions and the rest 12 items contain the (1-\alpha)\% confidence intervals.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

binomCI

Examples

x <- sample(40, 10)
n <- rep(40, 10)
binomCIs(x, n)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.