The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library( binfunest)
set.seed( 31394)
The package include a number of functions that report the theoretical bit error rate (BER) of many common modulation formats, with the signal-to-noise ratio (SNR) specified as the energy in a single bit divided by the noise power in a one Hertz bandwidth (\(E_b/N_0\)). See `help(“Theoretical”) for a complete list.
plot( QPSKdB, 3, 20, log="y", ylim=c( 1e-10, 0.5), panel.first = grid(),
main="Modulation Performance Curves", xlab="SNR in dB",
ylab="BER")
curve( QAMdB.8.star, 3, 20, col="blue", add=TRUE)
curve( PSQPSKdB, 3, 20, col="red", add=TRUE)
curve( QAMdB.16, 3, 20, col="green", add=TRUE)
legend( "bottomleft", legend=c( "QPSKdB", "QAMdB.8.star", "PSQPSKdB",
"QAMdB.16"),
lty=c( 1, 1, 1, 1),
col=c("black", "blue", "red", "green"))
In high performance communications systems it is common for both the transmitter (Tx) and receiver (Rx) to add noise to the signal. Unless you have a perfect example of one or the other, it is impossible to measure the source: both the Tx and Rx will contribute. This has the effect of having a minimum bit error rate (BER) even when no noise is added to the signal, called the Back-to-Back (B2B) BER, and is often expressed in Decibels as the signal-to-noise ratio (SNR) which would the B2B BER in a perfect Rx.
The other common effect is to add an offset to the SNR. That is, the system may always perform as though the SNR were a few Decibels less.
We can take a BER function in Decibels and add the offset and B2B BER to it as follows. The linear SNR is \(\gamma = E_b/N_0\), but in the B2B case the input noise \(N\) is zero, yet there is still a finite error rate observed. This is modeled as \(\gamma = E_b/{(N_0+\beta)}\) where \(\beta\) is \(1/B2B\).
\[ P_{B2B}(\gamma) = P\left[ O\left( \frac{1}{1/\gamma + 1/B}\right)\right]\]
where \(O\) is the linear offset
(i.e., undB( offset)
), \(B\) is the linear B2B SNR, and \(P_{B2B}(\gamma)\) is the probability of
error at a linear SNR of \(\gamma\).
If we have a function \(P_{dB}( s_{dB})\) of the SNR in Decibels, we can express the B2B and offset in decibels too.
\[ P_e( s_{dB}, B_{dB}, O_{dB}) = BER( -dB( undB( -s_{dB}) + undB( -B_{dB}) - O_{dB}) \]
The B2BQ
package provides a function factory to convert
any such function \(P_{dB}\) into a
function with B2B and Offset in Decibels B2BConvert
.
<- B2BConvert( QPSKdB)
QPSKdB.B2B <- 3
O1 <- 16
B1 <- 0:20
s plot( s, y=QPSKdB( s), typ="l", log="y", ylim=c( 1e-10, 0.5),
panel.first = grid(), main="QPSK Performance Limits", xlab="SNR in dB",
ylab="BER")
lines( s, y=QPSKdB.B2B( s, Inf, O1), col="blue", lwd=2)
lines( s, y=QPSKdB.B2B( s, B1, O1), col='red')
lines( s, y=QPSKdB.B2B( rep( B1, length( s)), Inf, O1), col='black', lty=2)
legend( "bottomleft", legend=c( "Theory", "Offset", "Offset + B2B", "B2B"),
lty=c( 1, 1, 1, 2), lwd=c(1, 2, 1, 1),
col=c( 'black', 'blue', 'red', 'black'))
nls
Let’s generate some example data and use nls
to fit the
curve to the data.
<- 1000000
N <- rbinom( length( s), N, QPSKdB.B2B( s, B1, O1)))
(r #> [1] 161193 134359 107870 83728 61830 43368 28246 17266 9817 5083
#> [11] 2195 1024 393 134 44 11 7 1 0 0
#> [21] 0
<- function( s, r, N, O, B, ylim=c( 1e-10, 0.5)) {
bplot1 plot( s, y=QPSKdB.B2B( s, B, O), col='red', log='y', type='l', ylim=ylim,
main="QPSK Performance Limits", xlab="SNR in dB",
ylab="BER", panel.first = grid())
points( s, r/N)
lines( s, y=QPSKdB( s))
lines( s, y=QPSKdB.B2B( s, Inf, O), col="blue", lwd=2)
lines( s, y=QPSKdB.B2B( rep( B1, length( s)), Inf, O1), col='black', lty=2)
legend( "bottomleft",
legend=c( "Data", "Theory", "Offset", "Offset + B2B", "B2B"),
lty=c( NA, 1, 1, 1, 2), lwd=c(NA, 1, 2, 1, 1), pch=c( 1, NA, NA, NA, NA),
col=c( 'black', 'black', 'blue', 'red', 'black'))
}bplot1( s, r, N, O1, B1)
nls
creates a non-linear least squares fit to estimate
the parameters.
<- data.frame( Errors=r, Trials=rep( N, length( s)), SNR=s)
df1 <- nls( Errors/Trials ~ QPSKdB.B2B( SNR, b, o), data=df1,
nls.fit1 start=list( b=10, o=0))
summary( nls.fit1)
#>
#> Formula: Errors/Trials ~ QPSKdB.B2B(SNR, b, o)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> b 15.948539 0.052466 304 <2e-16 ***
#> o 2.992966 0.002874 1041 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 8.646e-05 on 19 degrees of freedom
#>
#> Number of iterations to convergence: 7
#> Achieved convergence tolerance: 5.708e-08
bplot1(s, r, N, O1, B1)
<- coef( nls.fit1)
c lines( s, y=QPSKdB.B2B( s, c['b'], c['o']), col='green')
Those are remarkably close estimates. However, we have fit the error rate to the function, not the error counts. There are zeros in the data, and this doesn’t match the function at high SNRs very well. The following will perform the fit without the zero points.
<- nls( Errors/Trials ~ QPSKdB.B2B( SNR, b, o),
nls.fit2 data=subset( df1, Errors > 0), start=list( b=10, o=0))
summary( nls.fit2)
#>
#> Formula: Errors/Trials ~ QPSKdB.B2B(SNR, b, o)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> b 15.948539 0.057174 278.9 <2e-16 ***
#> o 2.992966 0.003132 955.5 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 9.422e-05 on 16 degrees of freedom
#>
#> Number of iterations to convergence: 7
#> Achieved convergence tolerance: 1.248e-07
bplot1(s, r, N, O1, B1)
<- coef( nls.fit2)
c lines( s, y=QPSKdB.B2B( s, c['b'], c['o']), col='green')
That was unsatisfying; the answer is almost identical to the version including the zeros. Plotting the data on a linear scale indicates why.
plot( s, y=QPSKdB.B2B( s, B1, O1), col='red', type='l', panel.first = grid(),
main="QPSK Performance Limits", xlab="SNR in dB", ylab="BER")
points( s, r/N, panel.first = grid())
lines( s, y=QPSKdB( s))
lines( s, y=QPSKdB.B2B( s, Inf, O1), col="blue", lwd=2)
lines( s, y=QPSKdB.B2B( s, c['b'], c['o']), col='green')
legend( "bottomleft",
legend=c( "Data", "Theory", "3 dB Offset", "Offset + B2B", "Fit"),
lty=c( NA, 1, 1, 1, 1), lwd=c(NA, 1, 2, 1, 1), pch=c( 1, NA, NA, NA, NA),
col=c( 'black', 'black', 'blue', 'red', 'green'))
The error rate is so close to zero past 10 dB that a least squares error minimization is not affected by any fit errors. A better technique might be to fit the “Q” function of both sides of the equation. The Q function is Markum’s Q function and is given by
\[ Q(s) = \frac{1}{2} \mathrm{Erfc} \left( s / \sqrt{2}\right) \]
In R, this is simply pnorm( x, lower.tail=FALSE)
,
although the package provides the function Q_(x)
for
convenience. Since the Q function of zero is infinite, we have to
exclude zero results again.
<- nls( Q_( Errors/Trials) ~ Q_( QPSKdB.B2B( SNR, b, o)),
nls.fit3 data=subset( df1, Errors > 0), start=list( b=10, o=0))
summary( nls.fit3)
#>
#> Formula: Q_(Errors/Trials) ~ Q_(QPSKdB.B2B(SNR, b, o))
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> b 15.948434 0.057152 279.1 <2e-16 ***
#> o 2.992959 0.003142 952.4 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 3.746e-05 on 16 degrees of freedom
#>
#> Number of iterations to convergence: 7
#> Achieved convergence tolerance: 5.456e-07
bplot1(s, r, N, O1, B1)
<- coef( nls.fit3)
c lines( s, y=QPSKdB.B2B( s, c['b'], c['o']), col='green')
In order to use all of the data, and to derive statistical significance from the estimates, we must turn to maximum likelihood estimate. This will model the parameters which based on the most likely parameters based on the observed data (including the zeros).
The likelihood is the probability of that the specific observation
took place. The dbinom
function returns exactly this:
dbinom( r, N, QPSKdB.B2B( s, B1, O1), log=TRUE)
#> [1] -6.94159646 -6.75102233 -7.28795647 -6.56415934 -6.45336248 -6.29411569
#> [7] -6.52783185 -5.90179937 -5.88238628 -6.01136681 -8.43372668 -5.37619530
#> [13] -4.34938113 -3.40025874 -2.83464924 -2.31452040 -2.84437356 -1.01822454
#> [19] -0.37789410 -0.12626314 -0.04583595
It is easy to see that the high-SNR observations (the last ones: the SNR ranges from zero to 20; the samples are numbered one to 21) have the highest likelihood. This is because when the SNR is high, zero errors is about the only likely event, while at a lower SNR, anything the the range of \(N p \pm 2\sqrt{N p}\) is pretty likely (where \(N\) is the number of samples, and \(p\) is the probability of an error; still assuming \(p << 1\) here), so each individual result when $ N p > 0$ has a small likelihood.
optim
If we have data consisting of bit errors generated by testing \(N\) bits at a variety of SNRs we can use
optim
to find maximum likelihood estimates of the offset
and B2B.
We have to cast the parameters as a vector to work with
optim
. The function llsb
below creates the
log-likelihood of the observations. optim
will naturally
find minimums, so the negative of the sum is used. Sorting the log
likelihood before the sum will ensure that precision isn’t lost,
although such loss of precision is “unlikely.”
<- function( par)
llsb -sum( sort( dbinom( r, N, QPSKdB.B2B( s, par[1], par[2]), log=TRUE),
decreasing=TRUE))
<- optim( par=c( b2b=20, off=0), llsb, hessian=TRUE)
mle1 $par
mle1#> b2b off
#> 15.937961 2.992359
<- sqrt( diag( solve( mle1$hessian))))
(mle1s #> b2b off
#> 0.060770870 0.006420547
Those are pretty close estimates. The diagonal of the inverse of the Hessian matrix is an estimate of the variance of the parameters, so their square root is the standard deviation. The expression below will show how many standard deviations from the answers those estimates are.
c( (mle1$par["b2b"] - B1)/mle1s["b2b"], (mle1$par["off"] - O1)/mle1s["off"])
#> b2b off
#> -1.020865 -1.190050
Below is a simple function that will take a function created by
B2BConvert
and estimate the two parameters. (A few extra
parameters are added for possible later use.)
<- function( N, s, r, f, ..., startpar=c( b2b=20, off=0),
mlef method="Nelder-Mead", lower, upper, control) {
stopifnot( length( N) == length( s) && length( s) == length( r))
<- function( par) {
ll -sum( dbinom( r, N, f( s, par[1], par[2], ...), log=TRUE))
}<- optim( startpar, ll, hessian=TRUE)
res
}
<- mlef( rep( N, length( s)), s, r, QPSKdB.B2B)
mle2 $par
mle2#> b2b off
#> 15.937961 2.992359
sqrt( diag( solve( mle2$hessian)))
#> b2b off
#> 0.060770870 0.006420547
The output is in $par
, the first being the B2B SNR, and
the second being the offset. Note the names come from the
startpar
vector.
Here is a plot with the original data and the estimated line. Note the estimated line lies on top of the the “Offset + 15 dB B2B”.
bplot1(s, r, N, O1, B1)
lines( s, QPSKdB.B2B( s, mle2$par[1], mle2$par[2]), col='green', lty=4)
legend( "bottomleft",
legend=c( "Data", "Theory", "3 dB Offset", "Offset + 15dB B2B",
"Estimated"),
lty=c( NA, 1, 1, 1, 4), pch=c( 1, NA, NA, NA, NA),
col=c( 'black', 'black', 'blue', 'red', 'green'))
mle
The stats4::mle
function can do a better job, and it
does not need the parameters cast into a list.
require( stats4)
#> Loading required package: stats4
<- function( b2b, off)
llsb2 -sum( dbinom( r, N, QPSKdB.B2B( s, b2b, off), log=TRUE))
<- mle( llsb2, start=c( b2b=20, off=0), nobs=length(s))
mle3 summary( mle3)
#> Maximum likelihood estimation
#>
#> Call:
#> mle(minuslogl = llsb2, start = c(b2b = 20, off = 0), nobs = length(s))
#>
#> Coefficients:
#> Estimate Std. Error
#> b2b 15.939294 0.060817557
#> off 2.992328 0.006422466
#>
#> -2 log L: 190.0448
Using stats4::mle
provides other functions to work with
the result as well:
logLik( mle3)
#> 'log Lik.' -95.02241 (df=2)
vcov( mle3)
#> b2b off
#> b2b 0.0036987752 3.170244e-04
#> off 0.0003170244 4.124807e-05
plot(profile( mle3), absVal = FALSE)
confint( mle3)
#> Profiling...
#> 2.5 % 97.5 %
#> b2b 15.821521 16.059970
#> off 2.979737 3.004913
binfunest::mleB2B
The same result can be reached easier with this package’s
mleB2B
function, which facilitates the data being hosted in
a data frame or list:
<- data.frame( Errors=r, SNR=s)
df <- mleB2B( data=df, Errors="Errors", N=N, f=QPSKdB.B2B,
(est1 fparms=list( x="SNR"), start=c(b2b=20, offset=0)))
#>
#> Call:
#> stats4::mle(minuslogl = function (b2b = 20, offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(b2b = 20,
#> offset = 0), method = "Nelder-Mead", nobs = 21L)
#>
#> Coefficients:
#> b2b offset
#> 15.937961 2.992359
It is common for many simulated systems or lower data rate systems to reach almost theoretical performance, with an offset, but no, or almost no, detectable B2B. That is, the system can be run back-to-back indefinitely and no errors. In this case, estimating a B2B might corrupt a simple offset estimate. The following has no visible B2B Q.
<- 3
O2 <- 24
B2 <- 1000000
N <- rbinom( length( s), N, QPSKdB.B2B( s, B2, O2)))
(r2 #> [1] 158398 131119 104422 79027 57287 38437 23773 13422 6500 2715
#> [11] 959 283 63 6 0 0 0 0 0 0
#> [21] 0
<- mleB2B( Errors=r2, N=N, f=QPSKdB.B2B,
mle4 fparms=list( x=s), start=c(b2b=20, offset=0))
summary(mle4)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (b2b = 20, offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(b2b = 20,
#> offset = 0), method = "Nelder-Mead", nobs = 21L)
#>
#> Coefficients:
#> Estimate Std. Error
#> b2b 23.377057 0.377372172
#> offset 2.989873 0.006843009
#>
#> -2 log L: 157.923
<- coef(mle4)
mle4coef plot( s, r2/N, log='y', panel.first = grid(), ylim=c(1e-14, 0.5))
#> Warning in xy.coords(x, y, xlabel, ylabel, log): 7 y values <= 0 omitted from
#> logarithmic plot
lines( s, y=QPSKdB( s), col='black')
lines( s, y=QPSKdB.B2B( s, Inf, O1), col="blue", lwd=2)
lines( s, y=QPSKdB.B2B( s, B2, O2), col="red")
lines( s, y=QPSKdB.B2B( s, mle4coef[1], mle4coef[2]), col="green")
legend( "bottomleft",
legend=c( "Data", "Theory", "Offset", "Offset + B2B",
"Estimated"),
lty=c( NA, 1, 1, 1), lwd=c(NA, 1, 2, 1, 1),
col=c( 'black', 'black', 'blue', 'red', 'green'),
pch=c( 1, NA, NA, NA, NA))
So the plot shows the data running down the Offset line, but it is
quite unconvincing that the B2B estimate is correct. Typically the B2B
parameter will have a very large variance in these instances (this does
not), and multiple runs will demonstrate this. Ignoring our guilty
knowledge of how the data was generated, we might want to test the
hypothesis that the B2B Q is really infinite (this is not an
impossibility). WE can estimate the offset only using the
fixed
option of mle
or simply setting the B2B
parameter. Note that when optimizing over a single variable, a few other
changes are required.
<- mleB2B( Errors=r2, N=N, f=QPSKdB.B2B, method="Brent",
(mle5 fparms=list( x=s, B2B=+Inf), start=c( offset=0),
lower=-6, upper=10))
#>
#> Call:
#> stats4::mle(minuslogl = function (offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(offset = 0),
#> method = "Brent", nobs = 21L, lower = -6, upper = 10)
#>
#> Coefficients:
#> offset
#> 3.05537
AIC(mle4, mle5)
#> df AIC
#> mle4 2 161.9230
#> mle5 1 298.7902
The substantially lower AIC for mle4
indicates that
mle5
is not a statistically better estimate. Again
ignoring our guilty knowledge that the B2B Q is really 24 dB, we might
now generate some more data. A 100 Gbps system that we are willing to
test for an hour will generate 3.6^{14} bits, and thus could be used to
test a system with a B2B Q of no more than about 24 dB (resulting in a
BER of 3.6936434^{-15}, and a an expected value of 1.3297116
errors).
The follow will simulate an additional run at 19 dB, and add that data to the current observations. We need to make a vector of the number of trials now as they are not all the same.
<- 100e9*3600
N2 <- c( rep(N, length(s)), N2)
Nvec <- c(s, 19)
s2 <- c( r2, rbinom( 1, N2, QPSKdB.B2B( 19, B2, O2))))
(r4 #> [1] 158398 131119 104422 79027 57287 38437 23773 13422 6500 2715
#> [11] 959 283 63 6 0 0 0 0 0 0
#> [21] 0 1
<- mleB2B( Errors=r4, N=Nvec, f=QPSKdB.B2B,
mle6 fparms=list( x=s2), start=c(b2b=20, offset=0))
summary( mle6)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (b2b = 20, offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(b2b = 20,
#> offset = 0), method = "Nelder-Mead", nobs = 22L)
#>
#> Coefficients:
#> Estimate Std. Error
#> b2b 23.693543 0.287762581
#> offset 2.995079 0.005659352
#>
#> -2 log L: 161.4442
<- coef(mle6)
mle6coef plot( s2, r4/Nvec, log='y', panel.first = grid(), ylim=c(1e-14, 0.5))
#> Warning in xy.coords(x, y, xlabel, ylabel, log): 7 y values <= 0 omitted from
#> logarithmic plot
lines( s2, y=QPSKdB( s2), col='black')
lines( s2, y=QPSKdB.B2B( s2, Inf, O1), col="blue", lwd=2)
lines( s2, y=QPSKdB.B2B( s2, B2, O2), col="red")
lines( s2, y=QPSKdB.B2B( s2, mle6coef[1], mle6coef[2]), col="green")
legend( "bottomleft",
legend=c( "Data", "Theory", "Offset", "Offset + B2B",
"Estimated"),
lty=c( NA, 1, 1, 1), lwd=c(NA, 1, 2, 1, 1),
col=c( 'black', 'black', 'blue', 'red', 'green'),
pch=c( 1, NA, NA, NA, NA))
Note that the B2B estimate increased a bit, and the std error decreased a bit. The example below will show the same process with an infinite B2B, showing that when it truly is infinite, the AIC of an infinite model is lower.
<- rbinom( length( s), N, QPSKdB( s - O2)))
(r3 #> [1] 158261 130294 103652 78825 56515 37349 22783 12445 5987 2402
#> [11] 775 200 39 4 1 0 0 0 0 0
#> [21] 0
<- mleB2B( N=N, Errors=r3, f=QPSKdB.B2B, fparms=list( x=s),
mle7 start=c(b2b=20, offset=0))
summary(mle7)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (b2b = 20, offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(b2b = 20,
#> offset = 0), method = "Nelder-Mead", nobs = 21L)
#>
#> Coefficients:
#> Estimate Std. Error
#> b2b 34.518721 5.077669338
#> offset 2.993674 0.006994309
#>
#> -2 log L: 154.0507
<- mleB2B( N=N, Errors=r3, f=QPSKdB.B2B, fparms=list( x=s, B2B=+Inf),
mle8 start=list(offset=0), method="Brent", lower=-6, upper=10)
summary(mle8)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = list(
#> offset = 0), method = "Brent", nobs = 21L, lower = -6, upper = 10)
#>
#> Coefficients:
#> Estimate Std. Error
#> [1,] 2.998738 0.003938352
#>
#> -2 log L: 154.8444
AIC(mle7,mle8)
#> df AIC
#> mle7 2 158.0507
#> mle8 1 156.8444
exp( (AIC( mle7) - AIC( mle6)) / 2)
#> [1] 0.02480458
While the above function worked, if you don’t have substantial samples of the tail, the offset and B2B can get confused. Also, the form requires an infinite estimate for B2B if the system is performing more-or-less theoretically. We need a method that is numerically better behaved in more conditions. We can cast the BER in terms of the \(Q\) function: \(Q( s) = (1/2)\mathrm{Erfc}(s/\sqrt{2})\) where \(\mathrm{Erfc( x)}\) is the complementary error function 1. Using this we can create a generic BER function as:
\[ BER( \gamma, a, b) = Q\left( \sqrt{ \frac{a \gamma} {1 + b \gamma}} \right) \]
where \(a\) and \(b\) are the linear versions of the offset
and B2B and \(\gamma\) is the linear
SNR. We also note that R does not have the \(\mathrm{Erfc}\), however, the following is
true: Erfc( x) = 2 * pnorm( x * sqrt( 2), lower=FALSE)
, and
the package includes the function Q_(x)
. With this
formulation, we have the following conversions:
$$
work with the Q_
function. In order to allow the
parameters to be negative without getting a negative square root, the
parameters are squared in the objective function. Since our data was
created with \(b = 0\) (i.e., the B2B Q
is infinite) we want the gradient search to allow negative \(a\) and \(b\) without failing.
\[ BER_2( \gamma, \alpha, \beta) = Q\left( \sqrt{ \frac{\alpha^2 \gamma} {1 + \beta^2 \gamma}} \right) \]
The mleB2B
function will estimate \(\alpha\) and \(\beta\), but we will want \(a = \alpha^2\) and \(b = \beta^2\).
<- function( s, a, b) Q_( sqrt( a^2 * s/(1 + b^2 * s)))
Q_ab <- mleB2B( N=N, Errors=r2, f=Q_ab, start=c( a=1, b=0), fparms=list(s=undB(s)))
mle8 summary( mle8)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (a = 1, b = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(a = 1,
#> b = 0), method = "Nelder-Mead", nobs = 21L)
#>
#> Coefficients:
#> Estimate Std. Error
#> a 1.00232165 0.0007846674
#> b 0.06789538 0.0029126650
#>
#> -2 log L: 157.906
The value of b
with a comparatively large standard error
is an indication that it really ought to be zero. Note that as its value
is equivalent to 23.363195 dB B2BQ, .
<- coef( mle8)
mle8coef plot( s, y=r2/N, log='y', type='p', panel.first = grid())
#> Warning in xy.coords(x, y, xlabel, ylabel, log): 7 y values <= 0 omitted from
#> logarithmic plot
lines( s, QPSKdB( s))
lines( s, Q_(sqrt( undB( s)/(1 + undB( -80) * s))), col='red')
lines( s, y=Q_ab( undB( s), mle8coef[1], mle8coef[2]), col="green")
legend( "bottomleft",
legend=c( "Data", "Theory", "0 dB Offset + 80 dB B2B",
"Estimated"),
lty=c( NA, 1, 1, 1), col=c( 'black', 'black', 'red', 'green'),
pch=c( 1, NA, NA, NA))
That generated very nice estimates. Note that the standard deviation of \(b^2\) is about half of \(b^2\), so it is reasonable to let \(b = 0\).
Now let’s try it with a detectable B2B.
<- 3
O4 <- 15
B4 <- rbinom( length( s), N, QPSKdB.B2B( s, B4, O4)))
(r4 #> [1] 162391 135526 109590 85323 63629 44885 29891 18587 10866 5883
#> [11] 2964 1369 559 234 72 26 8 4 1 1
#> [21] 1
<- mleB2B( N=N, Errors=r4, f=Q_ab, start=c( a=1, b=0),
mle9 fparms=list(s=undB(s)))
summary( mle9)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (a = 1, b = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(a = 1,
#> b = 0), method = "Nelder-Mead", nobs = 21L)
#>
#> Coefficients:
#> Estimate Std. Error
#> a 0.9998006 0.0007257007
#> b 0.1767547 0.0009707055
#>
#> -2 log L: 196.5237
<- coef( mle9)
mle9coef <- sqrt( diag( vcov( mle9))))
(mle9sd #> a b
#> 0.0007257007 0.0009707055
plot( s, r4/N, log='y',panel.first = grid())
lines( s, QPSKdB( s))
lines( s, y=QPSKdB.B2B( s, Inf, O4), col="blue")
lines( s, y=QPSKdB.B2B( s, B4, O4), col="red")
lines( s, y=Q_ab( undB( s), mle9coef[1], mle9coef[2]), col="green", lty=5)
legend( "bottomleft",
legend=c( "Data", "Theory", "Theory + 3 dB", "3 dB Offset + 20 dB B2B",
"Estimated"),
lty=c( NA, 1, 1, 1, 5),
col=c( 'black', 'black', 'blue', 'red', 'green'),
pch=c( 1, NA, NA, NA, NA))
We can get the coefficients from the following expression:
-2*dB(mle9coef)
#> a b
#> 0.001732147 15.052580632
We have some simulations of various constellations and their bit maps
used with perfect detectors (i.e., the constellation points were
generated, noise was added, and then the points were detected; there was
no actual modulation/demodulation). The BERDFc
data
included with the package has a count of symbols and bits per symbol, so
we need to make this data vector.
<- BERDFc[BERDFc$Name=="8QAM Star",] # Select one constellation
Q8Sbits $Nbits <- Q8Sbits$Bps * Q8Sbits$N # Add a Nbits column
Q8Sbits8.star.B2B <- B2BConvert( QAMdB.8.star)
QAMdB.<- mleB2B( data=Q8Sbits, N="Nbits", Errors="BER",
mle10 f=QAMdB.8.star.B2B , start=c( B2B=30, offset=0),
fparms=list( x="SNR"))
summary( mle10)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (B2B = 30, offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(B2B = 30,
#> offset = 0), method = "Nelder-Mead", nobs = 12L)
#>
#> Coefficients:
#> Estimate Std. Error
#> B2B 20.045714 0.128527020
#> offset -0.240504 0.004910512
#>
#> -2 log L: 891.1396
This looks like the B2B may be finite, and this can be verified by such a fit.
<- mleB2B( data=Q8Sbits, N="Nbits", Errors="BER",
mle11 f=QAMdB.8.star.B2B , method="Brent",
fparms=list( x="SNR", B2B=+Inf), start=c( offset=0),
lower=-6, upper=10)
summary( mle11)
#> Maximum likelihood estimation
#>
#> Call:
#> stats4::mle(minuslogl = function (offset = 0)
#> -sum(stats::dbinom(Errors, N, eval(fun), log = TRUE)), start = c(offset = 0),
#> method = "Brent", nobs = 12L, lower = -6, upper = 10)
#>
#> Coefficients:
#> Estimate Std. Error
#> [1,] -0.0892018 0.002145889
#>
#> -2 log L: 2078.837
AIC( mle10, mle11)
#> df AIC
#> mle10 2 895.1396
#> mle11 1 2080.8373
That result indicates that the B2B is actually needed. We can see what is happening here by looking at the data.
Q8Sbits#> Name SNR Bps NoisePower N SER BER Nbits
#> 25 8QAM Star 3 3 0.79032060 1600000 230974 306269 4800000
#> 26 8QAM Star 4 3 0.62789043 1600000 158180 210328 4800000
#> 27 8QAM Star 5 3 0.49863525 1600000 98785 131498 4800000
#> 28 8QAM Star 6 3 0.39581559 1600000 54622 72968 4800000
#> 29 8QAM Star 7 3 0.31499330 1600000 26713 35513 4800000
#> 30 8QAM Star 8 3 0.25009840 1600000 10919 14550 4800000
#> 31 8QAM Star 9 3 0.19861226 1600000 3445 4604 4800000
#> 32 8QAM Star 10 3 0.15778619 1600000 896 1181 4800000
#> 33 8QAM Star 11 3 0.12526456 1600000 137 177 4800000
#> 34 8QAM Star 12 3 0.09954161 1600000 17 23 4800000
#> 35 8QAM Star 13 3 0.07893708 1600000 2 2 4800000
#> 36 8QAM Star 14 3 0.06276492 17600000 1 2 52800000
The 14 dB SNR observation has only one symbol error, but reports two bit errors. This is because the 8QAM Star constellation has a few adjacent symbols that have two bit changes, and that one error doubles the estimated error rate. Therefore, this estimator indicates that the BER is not binomial distributed.
see Abramowitz and Stegun 29.2.29↩︎
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.