The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Get Started

Brain Imaging Data Structure (BIDS) is a standard for organizing neuroimaging and behavioral data (see https://bids.neuroimaging.io/index.html).

The goal of package bidsr is to provide comprehensive tools to query and manipulate ‘BIDS’ data files.

This vignette aims to demonstrate high-level tools to query a ‘BIDS’ project. The code requires executing a built-in command to download ‘BIDS’ example data-sets. Please copy-paste-run the following R commands:

library(bidsr)
example_root <- download_bids_examples()

Overview of a BIDS project

Let’s inspect the project ds000117 from the official BIDS example repository:

project_path <- file.path(example_root, "ds000117")
project <- bids_project(path = project_path)

print(project)
#> <ds000117>[BIDSProject] at:
#>   /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117
#>   - raw-data path: .
#>   - source-data path: sourcedata
#>   - derivative path: derivatives
#> +- Descriptions: ---------------------------------------------------------------
#> | This dataset was obtained from the OpenNeuro project
#> | (https://www.openneuro.org). Accession #: ds000117
#> | 
#> | The same dataset is also available here:
#> | ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/, but in
#> | a non-BIDS format (which may be easier to download by subject rather than
#> | by modality)
#> | 
#> | Note that it is a subset of the data available on OpenfMRI
#> | (http://www.openfmri.org; Accession #: ds000117).
#> | 
#> | Description: Multi-subject, multi-modal (sMRI+fMRI+MEG+EEG) neuroimaging
#> | dataset on face processing
#> | 
#> | Please cite the following reference if you use these data:
#> | 
#> | Wakeman, D.G. & Henson, R.N. (2015). A multi-subject, multi-modal human
#> | neuroimaging dataset. Sci. Data 2:150001 doi: 10.1038/sdata.2015.1
#> | 
#> | The data have been used in several publications including, for example:
#> | 
#> | Henson, R.N., Abdulrahman, H., Flandin, G. & Litvak, V. (2019). Multimodal
#> | integration of M/EEG and f/MRI data in SPM12. Frontiers in Neuroscience,
#> | Methods, 13, 300.
#> | 
#> | Henson, R.N., Wakeman, D.G., Litvak, V. & Friston, K.J. (2011). A
#> | Parametric Empirical Bayesian framework for the EEG/MEG inverse problem:
#> | generative models for multisubject and multimodal integration. Frontiers in
#> | Human Neuroscience, 5, 76, 1-16.
#> | 
#> | Chapter 42 of the SPM12 manual
#> | (http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf)
#> | 
#> | (see
#> | ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/Publications
#> | for full list), as well as the BioMag2010 data competition and the Kaggle
#> | competition: https://www.kaggle.com/c/decoding-the-human-brain)
#> | 
#> | ==================================================================================
#> | 
#> | func/ ----- Unlike in v1-v3 of this dataset, the first two (dummy) volumes
#> | have now been removed (as stated in *.json), so event onset times correctly
#> | refer to t=0 at start of third volume
#> | 
#> | Note that, owing to scanner error, Subject 10 only has 170 volumes in last
#> | run (Run 9) (hence the BIDS warning of some onsets in events.tsv file being
#> | later than the data)
#> | 
#> | meg/ ---- Three anatomical fiducials were digitized for aligning the MEG
#> | with the MRI: the nasion (lowest depression between the eyes) and the left
#> | and right ears (lowest depression between the tragus and the helix, above
#> | the tragus). This procedure is illustrated here:
#> | http://neuroimage.usc.edu/brainstorm/CoordinateSystems#Subject_Coordinate_System_.28SCS_.2F_CTF.29
#> | and in task-facerecognition_fidinfo.pdf
#> | 
#> | The following triggers are included in the .fif files and are also used in
#> | the “trigger” column of the meg and bold events files:
#> | 
#> | Trigger Label Simplified Label
#> | 
#> | 5 Initial Famous Face FAMOUS 6 Immediate Repeat Famous Face FAMOUS 7
#> | Delayed Repeat Famous Face FAMOUS 13 Initial Unfamiliar Face UNFAMILIAR 14
#> | Immediate Repeat Unfamiliar Face UNFAMILIAR 15 Delayed Repeat Unfamiliar
#> | Face UNFAMILIAR 17 Initial Scrambled Face SCRAMBLED 18 Immediate Repeat
#> | Scrambled Face SCRAMBLED 19 Delayed Repeat Scrambled Face SCRAMBLED
#> | 
#> | stimuli/meg/ ------------ The .bmp files correspond to those described in
#> | the text. There are 6 additional images in this directory, which were used
#> | in the practice experiment to familiarize participants with the task (hence
#> | some more BIDS validator warnings)
#> | 
#> | stimuli/mri/ ------------ The .bmp files correspond to those described in
#> | the text.
#> | 
#> | Defacing -------- Defacing of MPRAGE T1 images was performed by the
#> | submitter. A subset of subjects have given consent for non-defaced versions
#> | to be shared - in which case, please contact rik.henson@mrc-cbu.cam.ac.uk.
#> | 
#> | Quality Control --------------- Mriqc was run on the dataset. Results are
#> | located in derivatives/mriqc. Learn more about it here:
#> | https://mriqc.readthedocs.io/en/latest/
#> | 
#> | Known Issues ------------ N/A
#> | 
#> | Relationship of Subject Numbering relative to other versions of Dataset
#> | ------------
#> | 
#> | There are multiple versions of the dataset available on the web (see notes
#> | above), and these entailed a renumbering of the subjects for various
#> | reasons. Here are all the versions and how to match subjects between them
#> | (plus some rationale and history for different versions):
#> | 
#> | 1. Original Paper (N=19): Wakeman & Henson (2015): doi:10.1038/sdata.2015.1
#> | Number refers to order that tested (and some, eg 4, 7, 13 etc were excluded
#> | for not completing both MRI and MEG sessions)
#> | 
#> | 2. openfMRI, renumbered from paper:
#> | http://openfmri.org/s3-browser/?prefix=ds000117/ds000117_R0.1.1/uncompressed/
#> | Numbers 1-19 just made contiguous
#> | 
#> | 3. FTP subset of N=16: ftp:
#> | ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/ This
#> | set was used for SPM Courses Designed to illustrate multimodal integration,
#> | so wanted good MRI+MEG+EEG data for all subjects Removed original
#> | subject_01 and subject_06 because bad EEG data; subject_19 because poor EEG
#> | and fMRI data (And renumbered subject_14 for some reason).
#> | 
#> | 4. Current OpenNeuro subset N=16 used for (BIDS):
#> | https://openneuro.org/datasets/ds000117 OpenNeuro was rebranding of
#> | openfMRI, and enforced BIDS format Since this version designed to
#> | illustrate multi-modal BIDS, kept same numbering as FTP
#> | 
#> | W&H2015 openfMRI FTP openNeuro ======== ====== === ======= subject_01
#> | sub001 subject_02 sub002 Sub01 sub-01 subject_03 sub003 Sub02 sub-02
#> | subject_05 sub004 Sub03 sub-03 subject_06 sub005 subject_08 sub006 Sub05
#> | sub-05 subject_09 sub007 Sub06 sub-06 subject_10 sub008 Sub07 sub-07
#> | subject_11 sub009 Sub08 sub-08 subject_12 sub010 Sub09 sub-09 subject_14
#> | sub011 Sub04 sub-04 subject_15 sub012 Sub10 sub-10 subject_16 sub013 Sub11
#> | sub-11 subject_17 sub014 Sub12 sub-12 subject_18 sub015 Sub13 sub-13
#> | subject_19 sub016 subject_23 sub017 Sub14 sub-14 subject_24 sub018 Sub15
#> | sub-15 subject_25 sub019 Sub16 sub-16

File dataset_description.json

The top-level data description can be parsed via

description <- project$get_bids_dataset_description()

To obtain the values, use $ or @ operator (same as . in Python):

description$BIDSVersion
#> [1] "1.8.0"

# or 
description@BIDSVersion
#> [1] "1.8.0"

File participants.tsv

File participants.tsv is a top-level tabular that lists all the subjects. This file can be queried via method get_participants:

participants <- project$get_bids_participants()

Alternatively, we can read any tsv file with as_bids_tabular

participant_path <- file.path(project, "participants.tsv")
as_bids_tabular(participant_path, cls = BIDSTabularParticipants)
#> <BIDS Tabular>[BIDSTabular]
#> $meta:
#> {
#>   "age": {
#>     "LongName": "age",
#>     "Units": "year",
#>     "TermURL": "http://purl.obolibrary.org/obo/PATO_0000011"
#>   },
#>   "sex": {
#>     "LongName": "sex",
#>     "Description": "String value indicating phenotypical sex.",
#>     "Levels": {
#>       "F": {
#>         "Description": "Female",
#>         "TermURL": "http://purl.obolibrary.org/obo/PATO_0000383"
#>       },
#>       "M": {
#>         "Description": "Male",
#>         "TermURL": "http://purl.obolibrary.org/obo/PATO_0000384"
#>       }
#>     },
#>     "TermURL": "http://purl.obolibrary.org/obo/PATO_0001894"
#>   },
#>   "first_ses": {
#>     "LongName": "first session",
#>     "Description": "Indicates which session was the first session for this subject.",
#>     "Levels": {
#>       "meg": {
#>         "Description": "meg was the first session"
#>       },
#>       "mri": {
#>         "Description": "mri was the first session"
#>       }
#>     }
#>   }
#> }
#> 
#> $content:
#>     participant_id   age    sex first_ses
#>             <char> <int> <char>    <char>
#>  1:         sub-01    31      M       meg
#>  2:         sub-02    25      M       meg
#>  3:         sub-03    30      M       meg
#>  4:         sub-04    26      F       meg
#>  5:         sub-05    23      F       meg
#> ---                                      
#> 13:         sub-13    25      F       meg
#> 14:         sub-14    24      F       mri
#> 15:         sub-15    30      M       mri
#> 16:         sub-16    25      M       mri
#> 17:  sub-emptyroom    NA   <NA>      <NA>

Instantiate a BIDS subject

Given a project path or instance, a BIDS subject can be instantiated via

subject <- bids_subject(
  project = project, 
  subject_code = "sub-06"
)

print(subject)
#> <BIDSSubject> `sub-06` (project `ds000117`)

All BIDS subjects have entity key sub- that marks the subject code, for example, sub-06 means subject 06, hence the entity key sub- can be omitted, and bidsr accepts input such as subject_code = "06".

If project is not instantiated, its path is also acceptable, check this alternative:

subject <- bids_subject(
  project = project_path, 
  subject_code = "06"
)

Raw, source, or derivative data

BIDS mainly focuses on regulating the raw data, however, it also supports formatting source data and derivatives. The corresponding paths can be queried via resolve_bids_path method. To resolve the root path for raw/source data,

# resolve subject path (raw data by default)
resolve_bids_path(subject)
#> /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117/./sub-06

resolve_bids_path(subject, storage = "source")
#> /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117/sourcedata/sub-06

For derivatives, please specify the derivative names, for example:

resolve_bids_path(subject, storage = "derivative", prefix = "freesurfer")
#> /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117/derivatives/freesurfer/sub-06

Query subject files by types

The official BIDS and its extensions support various of data types, such as anat, func, meg, eeg, ieeg, etc.

To query the data files by type, use query_bids method. The following example shows all the anat data path, and its potential meta files

query_bids(subject, "anat")
#>           parsed data_type suffix extension    sub    ses    acq   run  echo
#>           <AsIs>    <char> <char>    <char> <char> <char> <char> <int> <int>
#>  1: sub-06/s....      anat    T1w    nii.gz     06    mri mprage    NA    NA
#>  2: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     1
#>  3: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     2
#>  4: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     3
#>  5: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     4
#>  6: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     5
#>  7: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     6
#>  8: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     7
#>  9: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     1
#> 10: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     2
#> 11: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     3
#> 12: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     4
#> 13: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     5
#> 14: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     6
#> 15: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     7

To use fine-grained search parameters, replace 'anat' with a list of search parameters.

query_bids(subject, list(
  # dataset to filter, choices are raw, source, or derivative
  storage = "raw",
  
  # include JSON sidecars; default is `FALSE`  
  sidecars = FALSE,
  
  # set to `NULL` to include all data types
  data_types = "anat",
  
  # filter all suffixes
  suffixes = NULL
))
#>           parsed data_type suffix extension    sub    ses    acq   run  echo
#>           <AsIs>    <char> <char>    <char> <char> <char> <char> <int> <int>
#>  1: sub-06/s....      anat    T1w    nii.gz     06    mri mprage    NA    NA
#>  2: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     1
#>  3: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     2
#>  4: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     3
#>  5: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     4
#>  6: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     5
#>  7: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     6
#>  8: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     1     7
#>  9: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     1
#> 10: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     2
#> 11: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     3
#> 12: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     4
#> 13: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     5
#> 14: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     6
#> 15: sub-06/s....      anat  FLASH    nii.gz     06    mri   <NA>     2     7

Here is another example that filters derivative files that are BIDS compliant.

query_bids(subject, list(
  # filter derivatives
  storage = "derivative",
  
  # filter `derivatives/meg_derivatives` folder
  prefix = "meg_derivatives",

  # include JSON sidecars
  sidecars = TRUE,
  
  # set to `NULL` to include all data types
  data_types = NULL,
  
  # only keep files with *_meg/log.* suffixes
  suffixes = c("meg", "log")
))
#>           parsed data_type suffix extension    sub    ses            task
#>           <AsIs>    <char> <char>    <char> <char> <char>          <char>
#>  1: derivati....     _root    meg      json     06    meg facerecognition
#>  2: derivati....       meg    meg      json     06    meg facerecognition
#>  3: derivati....       meg    log       txt     06    meg facerecognition
#>  4: derivati....       meg    meg       fif     06    meg facerecognition
#>  5: derivati....       meg    log       txt     06    meg facerecognition
#>  6: derivati....       meg    meg       fif     06    meg facerecognition
#>  7: derivati....       meg    log       txt     06    meg facerecognition
#>  8: derivati....       meg    meg       fif     06    meg facerecognition
#>  9: derivati....       meg    log       txt     06    meg facerecognition
#> 10: derivati....       meg    meg       fif     06    meg facerecognition
#> 11: derivati....       meg    log       txt     06    meg facerecognition
#> 12: derivati....       meg    meg       fif     06    meg facerecognition
#> 13: derivati....       meg    log       txt     06    meg facerecognition
#> 14: derivati....       meg    meg       fif     06    meg facerecognition
#>       proc   run
#>     <char> <int>
#>  1:    sss    NA
#>  2:    sss    NA
#>  3:    sss     1
#>  4:    sss     1
#>  5:    sss     2
#>  6:    sss     2
#>  7:    sss     3
#>  8:    sss     3
#>  9:    sss     4
#> 10:    sss     4
#> 11:    sss     5
#> 12:    sss     5
#> 13:    sss     6
#> 14:    sss     6

Filter & get BIDS entity

Here is an example of filtering func event files with BIDS entity run=02 The first column contains a list of file instances. Here’s an example to read the ACPC electrode coordinates:

filter_result <- query_bids(subject, list(
  storage = "raw",
  sidecars = FALSE,
  
  data_types = "func",
  suffixes = "events",
  
  # use R "formula" to filter entities
  entity_filters = list(

    # entity_key ~ expression returning TRUE/FALSE
    # When filtering the entities, `entity_key` will be
    # replaced with its value
    run ~ as.integer(run) == 2
  )
))
filter_result
#>          parsed data_type suffix extension    sub    ses            task   run
#>          <AsIs>    <char> <char>    <char> <char> <char>          <char> <int>
#> 1: sub-06/s....      func events       tsv     06    mri facerecognition     2

The first column "filter_result" is the parsed file object with entity information:

event_file <- filter_result$parsed[[1]]
event_file
#> sub-06/ses-mri/func/sub-06_ses-mri_task-facerecognition_run-02_events.tsv

To get entity values, use get_bids_entity:

get_bids_entity(event_file, "task")
#> [1] "facerecognition"

If supported by schema, the BIDS entity rules for the file can be queried via get_bids_entity_rules(event_file) method

Object event_file is relative to the project root, hence can be read by joining the project root path

event_path <- file.path(project, event_file)

# or 
event_path <- resolve_bids_path(project, format(event_file))

as_bids_tabular(event_path)
#> <BIDS Tabular>[BIDSTabular]
#> $meta:
#> {}
#> 
#> $content:
#>        onset duration circle_duration  stim_type trigger button_pushed
#>        <num>    <num>           <num>     <char>   <int>         <int>
#>   1:   0.000    0.897           0.596 UNFAMILIAR      13             4
#>   2:   3.207    0.895           0.549 UNFAMILIAR      14             4
#>   3:   6.514    0.959           0.547  SCRAMBLED      17             7
#>   4:   9.738    0.850           0.495  SCRAMBLED      18             7
#>   5:  12.895    0.988           0.548     FAMOUS       5             4
#>  ---                                                                  
#>  96: 385.073    0.935           0.439 UNFAMILIAR      13             4
#>  97: 388.331    0.944           0.551 UNFAMILIAR      13             4
#>  98: 391.455    0.988           0.417     FAMOUS       5             7
#>  99: 394.711    0.912           0.498     FAMOUS       6             7
#> 100: 397.401    0.012           0.000       <NA>     999             0
#>      response_time       stim_file
#>              <num>          <char>
#>   1:         0.849   func/u020.bmp
#>   2:         0.729   func/u020.bmp
#>   3:         1.197   func/s030.bmp
#>   4:         0.695   func/s030.bmp
#>   5:         1.075   func/f027.bmp
#>  ---                              
#>  96:         0.884   func/u031.bmp
#>  97:         1.183   func/u029.bmp
#>  98:         0.869   func/f021.bmp
#>  99:         1.200   func/f021.bmp
#> 100:         0.000 func/Circle.bmp

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.