The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(bellreg)
data(faults)
# ML approach:
mle <- bellreg(nf ~ lroll, data = faults, approach = "mle")
summary(mle)
#> Call:
#> bellreg(formula = nf ~ lroll, data = faults, approach = "mle")
#>
#> Coefficients:
#> Estimate StdErr z.value p.value
#> (Intercept) 0.98526380 0.33219359 2.9659 0.003018 **
#> lroll 0.00190932 0.00049003 3.8963 9.767e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> logLik = -88.96139 AIC = 181.9228
# Bayesian approach:
bayes <- bellreg(nf ~ lroll, data = faults, approach = "bayes", refresh = FALSE)
summary(bayes)
#>
#> bellreg(formula = nf ~ lroll, data = faults, approach = "bayes",
#> refresh = FALSE)
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> (Intercept) 0.974 0.007 0.332 0.314 0.748 0.984 1.198 1.609 2157.921 1.001
#> lroll 0.002 0.000 0.000 0.001 0.002 0.002 0.002 0.003 2400.936 1.000
#>
#> Inference for Stan model: bellreg.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
log_lik <- loo::extract_log_lik(bayes$fit)
loo::loo(log_lik)
#> Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.
#>
#> Computed from 4000 by 32 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_loo -204.5 34.7
#> p_loo 61.7 19.0
#> looic 409.0 69.4
#> ------
#> MCSE of elpd_loo is NA.
#> MCSE and ESS estimates assume independent draws (r_eff=1).
#>
#> Pareto k diagnostic values:
#> Count Pct. Min. ESS
#> (-Inf, 0.7] (good) 26 81.2% 376
#> (0.7, 1] (bad) 4 12.5% <NA>
#> (1, Inf) (very bad) 2 6.2% <NA>
#> See help('pareto-k-diagnostic') for details.
loo::waic(log_lik)
#> Warning:
#> 21 (65.6%) p_waic estimates greater than 0.4. We recommend trying loo instead.
#>
#> Computed from 4000 by 32 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_waic -207.4 36.9
#> p_waic 64.6 21.3
#> waic 414.8 73.8
#>
#> 21 (65.6%) p_waic estimates greater than 0.4. We recommend trying loo instead.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.