The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
bcputility is a wrapper for the command line utility program from SQL Server that does bulk imports/exports. The package assumes that bcp is already installed and is on the system search path. For large inserts to SQL Server over an ODBC connection (e.g. with the “DBI” package), writes can take a very long time as each row generates an individual insert statement. The bcp Utility greatly improves performance of large writes by using bulk inserts.
An export function is provided for convenience, but likely will not significantly improve performance over other methods.
You can install the released version of bcputility from CRAN with:
Install the development version with:
If bcp and sqlcmd is not on the system path or you want to override the default, set the option with the full file path:
Benchmarks were performed with a local installation of SQL Server Express. When testing with a remote SQL Server, performance of bcp over odbc was further improved.
library(DBI)
library(data.table)
library(bcputility)
server <- Sys.getenv('MSSQL_SERVER')
database <- Sys.getenv('MSSQL_DB')
driver <- 'ODBC Driver 17 for SQL Server'
set.seed(11)
n <- 1000000
importTable <- data.frame(
int = sample(x = seq(1L, 10000L, 1L), size = n, replace = TRUE),
numeric = sample(x = seq(0, 1, length.out = n/100), size = n,
replace = TRUE),
character = sample(x = state.abb, size = n, replace = TRUE),
factor = sample(x = factor(x = month.abb, levels = month.abb),
size = n, replace = TRUE),
logical = sample(x = c(TRUE, FALSE), size = n, replace = TRUE),
date = sample(x = seq(as.Date('2022-01-01'), as.Date('2022-12-31'),
by = 'days'), size = n, replace = TRUE),
datetime = sample(x = seq(as.POSIXct('2022-01-01 00:00:00'),
as.POSIXct('2022-12-31 23:59:59'), by = 'min'), size = n, replace = TRUE)
)
connectArgs <- makeConnectArgs(server = server, database = database)
con <- DBI::dbConnect(odbc::odbc(),
Driver = "SQL Server",
Server = server,
Database = database)
importResults <- microbenchmark::microbenchmark(
bcpImport1000 = {
bcpImport(importTable,
connectargs = connectArgs,
table = 'importTable1',
bcpOptions = list("-b", 1000, "-a", 4096, "-e", 10),
overwrite = TRUE,
stdout = FALSE)
},
bcpImport10000 = {
bcpImport(importTable,
connectargs = connectArgs,
table = 'importTable2',
bcpOptions = list("-b", 10000, "-a", 4096, "-e", 10),
overwrite = TRUE,
stdout = FALSE)
},
bcpImport50000 = {
bcpImport(importTable,
connectargs = connectArgs,
table = 'importTable3',
bcpOptions = list("-b", 50000, "-a", 4096, "-e", 10),
overwrite = TRUE,
stdout = FALSE)
},
bcpImport100000 = {
bcpImport(importTable,
connectargs = connectArgs,
table = 'importTable4',
bcpOptions = list("-b", 100000, "-a", 4096, "-e", 10),
overwrite = TRUE,
stdout = FALSE)
},
dbWriteTable = {
con <- DBI::dbConnect(odbc::odbc(),
Driver = driver,
Server = server,
Database = database,
trusted_connection = 'yes')
DBI::dbWriteTable(con, name = 'importTable5', importTable, overwrite = TRUE)
},
times = 30L,
unit = 'seconds'
)
importResults
expr | min | lq | mean | median | uq | max | neval |
---|---|---|---|---|---|---|---|
bcpImport1000 | 15.017385 | 16.610868 | 17.405555 | 17.656265 | 18.100990 | 19.44482 | 30 |
bcpImport10000 | 10.091266 | 10.657926 | 10.926738 | 10.916577 | 11.208184 | 11.46027 | 30 |
bcpImport50000 | 8.982498 | 9.337509 | 9.677375 | 9.571526 | 9.896179 | 10.77709 | 30 |
bcpImport100000 | 8.769598 | 9.303473 | 9.562921 | 9.581927 | 9.855355 | 10.36949 | 30 |
dbWriteTable | 13.570956 | 13.820707 | 15.154505 | 14.159002 | 16.378986 | 27.28819 | 30 |
Time in seconds
Note: bcp exports of data may not match the format of fwrite
. dateTimeAs = 'write.csv'
was used to make timings comparable, which decreased the performance of “data.table”. Optimized write formats for date times from fwrite
outperforms bcp for data that is small enough to be pulled into memory.
exportResults <- microbenchmark::microbenchmark(
bcpExportChar = {
bcpExport('inst/benchmarks/test1.csv',
connectargs = connectArgs,
table = 'importTableInit',
fieldterminator = ',',
stdout = FALSE)
},
bcpExportNchar = {
bcpExport('inst/benchmarks/test2.csv',
connectargs = connectArgs,
table = 'importTableInit',
fieldterminator = ',',
stdout = FALSE)
},
fwriteQuery = {
fwrite(DBI::dbReadTable(con, 'importTableInit'),
'inst/benchmarks/test3.csv', dateTimeAs = 'write.csv',
col.names = FALSE)
},
times = 30L,
unit = 'seconds'
)
exportResults
expr | min | lq | mean | median | uq | max | neval |
---|---|---|---|---|---|---|---|
bcpExportChar | 2.565654 | 2.727477 | 2.795670 | 2.756685 | 2.792291 | 3.352325 | 30 |
bcpExportNchar | 2.589367 | 2.704135 | 2.765784 | 2.734957 | 2.797286 | 3.479074 | 30 |
fwriteQuery | 7.429731 | 7.602853 | 7.645852 | 7.654730 | 7.703634 | 7.868419 | 30 |
Time in seconds
query <- 'SELECT * FROM [dbo].[importTable1] WHERE int < 1000'
queryResults <- microbenchmark::microbenchmark(
bcpExportQueryChar = {
bcpExport('inst/benchmarks/test4.csv',
connectargs = connectArgs,
query = query,
fieldterminator = ',',
stdout = FALSE)
},
bcpExportQueryNchar = {
bcpExport('inst/benchmarks/test5.csv',
connectargs = connectArgs,
query = query,
fieldterminator = ',',
stdout = FALSE)
},
fwriteQuery = {
fwrite(DBI::dbGetQuery(con, query),
'inst/benchmarks/test6.csv', dateTimeAs = 'write.csv',
col.names = FALSE)
},
times = 30L,
unit = 'seconds'
)
queryResults
expr | min | lq | mean | median | uq | max | neval |
---|---|---|---|---|---|---|---|
bcpExportQueryChar | 0.3444491 | 0.4397317 | 0.4557119 | 0.4490924 | 0.4615573 | 0.7237182 | 30 |
bcpExportQueryNchar | 0.3305265 | 0.4444705 | 0.4412670 | 0.4500690 | 0.4605971 | 0.4815894 | 30 |
fwriteQuery | 0.6737879 | 0.7141933 | 0.7421377 | 0.7311998 | 0.7548233 | 0.9143555 | 30 |
Time in seconds
Importing spatial data from ‘sf’ objects is also supported. The sql statements after import are to produce equivalent tables in the database.
library(sf)
nc <- st_read(system.file("gpkg/nc.gpkg", package = "sf"))
divN <- 10
shp1 <- cbind(nc[sample.int(nrow(nc), n / divN, replace = TRUE),],
importTable[seq_len(n / divN), ],
id = seq_len(n / divN))
geometryResults <- microbenchmark::microbenchmark(
bcpImportGeometry = {
bcpImport(shp1,
connectargs = connectArgs,
table = 'shp1',
overwrite = TRUE,
stdout = FALSE,
spatialtype = 'geometry',
bcpOptions = list("-b", 50000, "-a", 4096, "-m", 0))
},
odbcImportGeometry = {
con <- DBI::dbConnect(odbc::odbc(),
driver = driver,
server = server,
database = database,
trusted_connection = 'yes')
tableName <- 'shp2'
spatialType <- 'geometry'
geometryColumn <- 'geom'
binaryColumn <- 'geomWkb'
srid <- sf::st_crs(nc)$epsg
shpBin2 <- data.table(shp1)
data.table::set(x = shpBin2, j = binaryColumn,
value = blob::new_blob(lapply(sf::st_as_binary(shpBin2[[geometryColumn]]),
as.raw)))
data.table::set(x = shpBin2, j = geometryColumn, value = NULL)
dataTypes <- DBI::dbDataType(con, shpBin2)
dataTypes[binaryColumn] <- 'varbinary(max)'
DBI::dbWriteTable(conn = con, name = tableName, value = shpBin2,
overwrite = TRUE, field.types = dataTypes)
DBI::dbExecute(conn = con, sprintf('alter table %1$s add %2$s %3$s;',
tableName, geometryColumn, spatialType))
DBI::dbExecute(conn = con,
sprintf('UPDATE %1$s
SET geom = %3$s::STGeomFromWKB([%4$s], %2$d);
ALTER TABLE %1$s DROP COLUMN [%4$s];', tableName, srid, spatialType,
binaryColumn)
)
},
bcpImportGeography = {
bcpImport(shp1,
connectargs = connectArgs,
table = 'shp3',
overwrite = TRUE,
stdout = FALSE,
spatialtype = 'geography',
bcpOptions = list("-b", 50000, "-a", 4096, "-m", 0))
},
odbcImportGeography = {
con <- DBI::dbConnect(odbc::odbc(),
driver = driver,
server = server,
database = database,
trusted_connection = 'yes')
tableName <- 'shp4'
spatialType <- 'geography'
geometryColumn <- 'geom'
binaryColumn <- 'geomWkb'
srid <- sf::st_crs(nc)$epsg
shpBin4 <- data.table(shp1)
data.table::set(x = shpBin4, j = binaryColumn,
value = blob::new_blob(lapply(sf::st_as_binary(shpBin4[[geometryColumn]]),
as.raw)))
data.table::set(x = shpBin4, j = geometryColumn, value = NULL)
dataTypes <- DBI::dbDataType(con, shpBin4)
dataTypes[binaryColumn] <- 'varbinary(max)'
DBI::dbWriteTable(conn = con, name = tableName, value = shpBin4,
overwrite = TRUE, field.types = dataTypes)
DBI::dbExecute(conn = con, sprintf('alter table %1$s add %2$s %3$s;',
tableName, geometryColumn, spatialType))
DBI::dbExecute(conn = con,
sprintf('UPDATE %1$s
SET geom = %3$s::STGeomFromWKB([%4$s], %2$d);
ALTER TABLE %1$s DROP COLUMN [%4$s];', tableName, srid, spatialType,
binaryColumn)
)
DBI::dbExecute(conn = con,
sprintf(
'UPDATE %1$s SET [%2$s] = [%2$s].MakeValid().ReorientObject().MakeValid()
WHERE [%2$s].MakeValid().EnvelopeAngle() > 90;',
tableName, geometryColumn))
},
times = 30L,
unit = 'seconds'
)
geometryResults
expr | min | lq | mean | median | uq | max | neval |
---|---|---|---|---|---|---|---|
bcpImportGeometry | 18.01451 | 19.48747 | 20.68834 | 20.45136 | 21.74212 | 26.87033 | 30 |
odbcImportGeometry | 18.29721 | 20.63363 | 22.35044 | 21.29087 | 24.04490 | 27.81112 | 30 |
bcpImportGeography | 71.23260 | 75.04588 | 82.65286 | 76.36985 | 96.68469 | 102.70909 | 30 |
odbcImportGeography | 73.29818 | 76.12481 | 84.58432 | 77.93419 | 97.36155 | 107.00186 | 30 |
Time in seconds
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.