Package 'bbssr'

June 18, 2025

Type Package

Title Blinded Sample Size Re-Estimation for Binary Endpoints

Version 1.0.2 **Date** 2025-06-14

Description Provides comprehensive tools for blinded sample size re-estimation (BSSR) in two-arm clinical trials with binary endpoints. Unlike traditional fixed-sample designs, BSSR allows adaptive sample size adjustments during trials while maintaining statistical integrity and study blinding. Implements five exact statistical tests: Pearson chi-squared, Fisher exact, Fisher mid-p, Z-pooled exact unconditional, and Boschloo exact unconditional tests. Supports restricted, unrestricted, and weighted BSSR approaches with exact Type I error control. Statistical methods based on Mehrotra et al. (2003) <doi:10.1111/1541-0420.00051> and Kieser (2020) <doi:10.1007/978-3-030-49528-2_21>.

License MIT + file LICENSE

URL https://github.com/gosukehommaEX/bbssr

BugReports https://github.com/gosukehommaEX/bbssr/issues

Depends R (>= 3.5.0) **Imports** fpCompare, stats

Suggests testthat (>= 3.0.0), knitr, rmarkdown, dplyr, ggplot2, tibble, tidyr, Exact, exact2x2, microbenchmark

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Gosuke Homma [aut, cre]

Maintainer Gosuke Homma <my.name.is.gosuke@gmail.com>

Repository CRAN

Date/Publication 2025-06-18 12:00:06 UTC

2 BinaryPower

Contents

Binar	ryPower	Po	wer	C	alc	ulc	ıtic	on j	foi	r 7	we)- <i>F</i>	1rr	n '	Tri	ial	s v	vit	h I	Bir	ıaı	ry	Εı	nd	ро	ini	ts		
Index																													9
	BinarySampleSize	·				•											•		•		•					•	٠	•	. 7
	BinaryRR																												
	BinaryPowerBSSI	₹																											. 3
	BinaryPower			•		•								•	•						•	•	•					•	. 2

Description

Calculates power for two-arm trials with binary endpoints using exact statistical tests. The function supports five different one-sided tests and can handle vectors of probabilities.

Usage

```
BinaryPower(p1, p2, N1, N2, alpha, Test)
```

Arguments

p1	True probability of responders for group 1 (can be a vector with different values)
p2	True probability of responders for group 2 (can be a vector with different values)
N1	Sample size for group 1
N2	Sample size for group 2
alpha	One-sided level of significance
Test	Type of statistical test. Options: 'Chisq', 'Fisher', 'Fisher-midP', 'Z-pool', or 'Boschloo'

Details

The function supports the following five one-sided tests:

- The one-sided Pearson chi-squared test (Chisq)
- The Fisher exact test (Fisher)
- The Fisher mid-p test (Fisher-midP)
- The Z-pooled exact unconditional test (Z-pool)
- The Boschloo exact unconditional test (Boschloo)

The power calculation is based on the exact distribution of the test statistic under the specified alternative hypothesis.

Value

A numeric value or vector of power values. If vectors are provided for p1 and p2, a vector of powers corresponding to each combination will be returned.

BinaryPowerBSSR 3

Author(s)

```
Gosuke Homma (<my.name.is.gosuke@gmail.com>)
```

Examples

BinaryPowerBSSR

Power Calculation for Two-Arm Trials with Binary Endpoints Using Blinded Sample Size Re-estimation (BSSR)

Description

Calculates the power for two-arm trials with binary endpoints when blinded sample size re-estimation (BSSR) is implemented. The function supports five different statistical tests and allows for both restricted and unrestricted designs with optional weighted approaches.

Usage

```
BinaryPowerBSSR(
asmd.p1,
asmd.p2,
p,
Delta.A,
Delta.T,
N1,
N2,
omega,
r,
```

4 BinaryPowerBSSR

```
alpha,
tar.power,
Test,
restricted,
weighted
```

Arguments

asmd.p1Assumed proportion of responders for group 1 asmd.p2 Assumed proportion of responders for group 2 Vector of pooled proportions of responders from both groups (can specify multiple values) Delta.A Assumed treatment effect (risk difference) Delta.T True treatment effect (risk difference) Initial sample size of group 1 N1 N2 Initial sample size of group 2 Fraction of sample size used for interim analysis (i.e., for BSSR) omega Allocation ratio to group 1 r alpha One-sided level of significance tar.power Target power Type of statistical test. Options: 'Chisq', 'Fisher', 'Fisher-midP', 'Z-pool', or Test 'Boschloo'

Logical. If TRUE, restricted design is chosen

Logical. If TRUE, weighted approach is chosen

Details

restricted

weighted

The function supports the following five one-sided tests:

- The one-sided Pearson chi-squared test (Chisq)
- The Fisher exact test (Fisher)
- The Fisher mid-p test (Fisher-midP)
- The Z-pooled exact unconditional test (Z-pool)
- The Boschloo exact unconditional test (Boschloo)

Value

A data frame containing:

```
p1 True probability of responders for group 1
```

p2 True probability of responders for group 2

p True probability of pooled responders from both groups

power.BSSR Power for BSSR design

power.TRAD Power for traditional design

BinaryRR 5

Author(s)

Gosuke Homma (<my.name.is.gosuke@gmail.com>)

Examples

```
# Simple BSSR calculation with fast Chi-squared test
result1 <- BinaryPowerBSSR(</pre>
  asmd.p1 = 0.6, asmd.p2 = 0.3,
  p = 0.45,
  Delta.A = 0.3, Delta.T = 0.3,
  N1 = 5, N2 = 5, omega = 0.5, r = 1,
  alpha = 0.025, tar.power = 0.8,
  Test = 'Chisq',
  restricted = FALSE, weighted = FALSE
print(result1)
# More computationally intensive BSSR examples
result2 <- BinaryPowerBSSR(</pre>
  asmd.p1 = 0.45,
  asmd.p2 = 0.09,
  p = seq(0.14, 0.23, by = 0.01),
  Delta.A = 0.36,
  Delta.T = 0.36,
  N1 = 24,
  N2 = 24,
  omega = 0.5,
  r = 1,
  alpha = 0.025,
  tar.power = 0.8,
  Test = 'Z-pool',
  restricted = FALSE,
  weighted = TRUE
print(result2)
```

BinaryRR

Rejection Region for Two-Arm Trials with Binary Endpoints

Description

Provides a rejection region (RR) for two-arm trials with binary endpoints using various exact statistical tests. The function supports five different one-sided tests.

Usage

```
BinaryRR(N1, N2, alpha, Test)
```

6 BinaryRR

Arguments

N1	Sample size for group 1
N2	Sample size for group 2
alpha	One-sided level of significance
Test	Type of statistical test. Options: 'Chisq', 'Fisher', 'Fisher-midP', 'Z-pool', or 'Boschloo'

Details

The function supports the following five one-sided tests:

- The one-sided Pearson chi-squared test (Chisq)
- The Fisher exact test (Fisher)
- The Fisher mid-p test (Fisher-midP)
- The Z-pooled exact unconditional test (Z-pool)
- The Boschloo exact unconditional test (Boschloo)

Value

A logical matrix representing the rejection region (RR). Matrix dimensions are (N1+1) x (N2+1), where TRUE indicates rejection of the null hypothesis.

Author(s)

```
Gosuke Homma (<my.name.is.gosuke@gmail.com>)
```

Examples

```
# Simple example with small sample sizes (runs quickly)
N1 <- 5
N2 <- 5
alpha <- 0.025
Test <- 'Chisq'
RR <- BinaryRR(N1, N2, alpha, Test)
print(dim(RR))  # Should be (6, 6)

# More computationally intensive example
N1 <- 20
N2 <- 10
alpha <- 0.025
Test <- 'Boschloo'
RR <- BinaryRR(N1, N2, alpha, Test)
print(RR)</pre>
```

BinarySampleSize 7

DinamiCamalacia	Committee Control of the Control of
BinarySampleSize	Sample Size Calculation for Two-Arm Trials with Binary Endpoints

Description

Calculates the required sample size for two-arm trials with binary endpoints using various exact statistical tests. The function supports five different one-sided tests.

Usage

```
BinarySampleSize(p1, p2, r, alpha, tar.power, Test)
```

Arguments

p1	True probability of responders for group 1
p2	True probability of responders for group 2
r	Allocation ratio to group 1 (i.e., allocation ratio of group 1:group $2 = r:1, r > 0$)
alpha	One-sided level of significance
tar.power	Target power
Test	Type of statistical test. Options: 'Chisq', 'Fisher', 'Fisher-midP', 'Z-pool', or 'Boschloo'

Details

The function supports the following five one-sided tests:

- The one-sided Pearson chi-squared test (Chisq)
- The Fisher exact test (Fisher)
- The Fisher mid-p test (Fisher-midP)
- The Z-pooled exact unconditional test (Z-pool)
- The Boschloo exact unconditional test (Boschloo)

The calculation uses a three-step approach:

- 1. Calculate initial sample size using normal approximation for chi-squared test
- 2. Perform power calculation with the initial sample size
- 3. Use grid search algorithm to find the optimal sample size

8 BinarySampleSize

Value

```
A data frame containing:

p1 True probability of responders for group 1
```

pr True probability of responders for group i

p2 True probability of responders for group 2

r Allocation ratio to group 1

alpha One-sided level of significance

tar.power Target power

Test Name of the statistical test

Power Calculated power

N1 Required sample size of group 1

N2 Required sample size of group 2

N Total required sample size

Author(s)

```
Gosuke Homma (<my.name.is.gosuke@gmail.com>)
```

Examples

Index

BinaryPower, 2 BinaryPowerBSSR, 3 BinaryRR, 5 BinarySampleSize, 7