The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Bayesian Stability Analysis of Genotype by Environment Interaction (GEI)
Version: 0.2.0
Maintainer: Muhammad Yaseen <myaseen208@gmail.com>
Description: Performs general Bayesian estimation method of linear–bilinear models for genotype × environment interaction. The method is explained in Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) (<doi:10.1007/s13253-011-0063-9>).
Depends: R (≥ 3.1)
Imports: dplyr, ggplot2, lme4, MASS, rstiefel, rlang, scales, stats, tibble, tidyr
License: GPL-2
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2024-10-15 02:30:56 UTC; myaseen208
Author: Muhammad Yaseen [aut, cre], Diego Jarquin [aut, ctb], Sergio Perez-Elizalde [aut, ctb], Juan Burgueño [aut, ctb], Jose Crossa [aut, ctb]
Repository: CRAN
Date/Publication: 2024-10-15 04:40:03 UTC

Bayesian Estimation of Genotype by Environment Interaction Model

Description

Bayesian estimation method of linear–bilinear models for Genotype by Environment Interaction Model

Usage

## Default S3 method:
bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

.rep

Replication Factor

.nIter

Number of Iterations

Value

Genotype by Environment Interaction Model

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Diego Jarquin (diego.jarquin@gmail.com)

  3. Sergio Perez-Elizalde (sergiop@colpos.mx)

  4. Juan Burgueño (j.burgueno@cgiar.org)

  5. Jose Crossa (j.crossa@cgiar.org)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples

## Not run: 
library(baystability)
library(dplyr)
data(cultivo2008)
fm1 <-
   ge_ammi(
      .data  = cultivo2008
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )

r0 <- fm1$g
c0 <- fm1$e
n0 <- fm1$Rep
k0 <- fm1$k

mu0      <- fm1$mu
sigma20  <- fm1$sigma2
tau0     <- fm1$tau
tao0     <- fm1$tao
delta0   <- fm1$delta
lambdas0 <- fm1$lambdas
alphas0  <- fm1$alphas
gammas0  <- fm1$gammas

ge_means0 <- fm1$ge_means$ge_means

data(cultivo2008)

fm2 <-
 ge_ammi(
   .data = cultivo2009
   , .y    = y
   , .gen  = entry
   , .env  = site
   , .rep  = rep
  )

k        <- fm2$k
alphasa  <- fm2$alphas
gammasa  <- fm2$gammas

alphas1  <-
           tibble::as_tibble(fm2$alphas, .name_repair = "unique") %>%
           setNames(paste0("V", 1:ncol(.)))
gammas1  <-
           tibble::as_tibble(fm2$gammas, .name_repair = "unique") %>%
           setNames(paste0("V", 1:ncol(.)))


# Biplots OLS
library(ggplot2)
    BiplotOLS1 <-
      ggplot(data = alphas1, mapping = aes(x = V1, y = V2)) +
      geom_point() +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_text(aes(label = 1:nrow(alphas1)), vjust = "inward", hjust = "inward") +
      scale_x_continuous(
               limits = c(-max(abs(c(range(alphas1[, 1:2]))))
                         , max(abs(c(range(alphas1[, 1:2])))))) +
      scale_y_continuous(
               limits = c(-max(abs(c(range(alphas1[, 1:2]))))
                         , max(abs(c(range(alphas1[, 1:2])))))) +
      labs(title = "OLS", x = expression(u[1]), y = expression(u[2])) +
      theme_bw() +
      theme(plot.title = element_text(hjust = 0.5))
      print(BiplotOLS1)


    BiplotOLS2 <-
      ggplot(data = gammas1, mapping = aes(x = V1, y = V2)) +
      geom_point() +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_text(aes(label = 1:nrow(gammas1)), vjust = "inward", hjust = "inward") +
      scale_x_continuous(
                limits = c(-max(abs(c(range(gammas1[, 1:2]))))
                         , max(abs(c(range(gammas1[, 1:2])))))) +
      scale_y_continuous(
                limits = c(-max(abs(c(range(gammas1[, 1:2]))))
                          , max(abs(c(range(gammas1[, 1:2])))))) +
      labs(title = "OLS", x = expression(v[1]), y = expression(v[2])) +
      theme_bw() +
      theme(plot.title = element_text(hjust = 0.5))
      print(BiplotOLS2)


    BiplotOLS3 <-
      ggplot(data = alphas1, mapping = aes(x = V1, y = V2)) +
      geom_point() +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_text(aes(label = 1:nrow(alphas1)), vjust = "inward", hjust = "inward") +
      geom_point(data = gammas1, mapping = aes(x = V1, y = V2)) +
      geom_segment(data = gammas1, aes(x = 0, y = 0, xend = V1, yend = V2),
                    arrow = arrow(length = unit(0.2, "cm")), alpha = 0.75, color = "red") +
      geom_text(data = gammas1,
              aes(x = V1, y = V2, label = paste0("E", 1:nrow(gammasa)))
             , vjust = "inward", hjust = "inward") +
      scale_x_continuous(
              limits = c(-max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2]))))
                        , max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2])))))) +
      scale_y_continuous(
              limits = c(-max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2]))))
                       , max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2])))))) +
      labs(title = "OLS", x = expression(PC[1]), y = expression(PC[2])) +
      theme_bw() +
      theme(plot.title = element_text(hjust = 0.5))
      print(BiplotOLS3)

data(cultivo2009)
fm3 <-
  bayes_ammi(
    .data = cultivo2009
    , .y     = y
    , .gen   = entry
    , .env   = site
    , .rep   = rep
    , .nIter = 200
  )

 Mean_Alphas <- fm3$Mean_Alphas %>% setNames(paste0("V", 1:ncol(.)))
 Mean_Gammas <- fm3$Mean_Gammas %>% setNames(paste0("V", 1:ncol(.)))


# Biplots Bayesian
BiplotBayes1 <-
  ggplot(data = Mean_Alphas, mapping = aes(x = V1, y = V2)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) +
  geom_text(aes(label = 1:nrow(Mean_Alphas)),
             vjust = "inward"
           , hjust = "inward") +
  scale_x_continuous(
     limits = c(-max(abs(c(range(Mean_Alphas[, 1:2]))))
               , max(abs(c(range(Mean_Alphas[, 1:2])))))) +
  scale_y_continuous(
      limits = c(-max(abs(c(range(Mean_Alphas[, 1:2]))))
                , max(abs(c(range(Mean_Alphas[, 1:2])))))) +
  labs(title = "Bayes", x = expression(u[1]), y = expression(u[2])) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))

print(BiplotBayes1)


BiplotBayes2 <-
  ggplot(data = Mean_Gammas, mapping = aes(x = V1, y = V2)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) +
  geom_text(aes(label = 1:nrow(Mean_Gammas)), vjust = "inward", hjust = "inward") +
  scale_x_continuous(
            limits = c(-max(abs(c(range(Mean_Gammas[, 1:2]))))
                      , max(abs(c(range(Mean_Gammas[, 1:2])))))) +
  scale_y_continuous(
            limits = c(-max(abs(c(range(Mean_Gammas[, 1:2]))))
                      , max(abs(c(range(Mean_Gammas[, 1:2])))))) +
  labs(title = "Bayes", x = expression(v[1]), y = expression(v[2])) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))

print(BiplotBayes2)


BiplotBayes3 <-
  ggplot(data = Mean_Alphas, mapping = aes(x = V1, y = V2)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) +
  geom_text(aes(label = 1:nrow(Mean_Alphas)),
             vjust = "inward", hjust = "inward") +
  geom_point(data = Mean_Gammas, mapping = aes(x = V1, y = V2)) +
  geom_segment(data = Mean_Gammas,
                aes(x = 0, y = 0, xend = V1, yend = V2),
               arrow = arrow(length = unit(0.2, "cm"))
               , alpha = 0.75, color = "red") +
  geom_text(data = Mean_Gammas,
            aes(x = V1, y = V2,
            label = paste0("E", 1:nrow(Mean_Gammas))),
            vjust = "inward", hjust = "inward") +
  scale_x_continuous(
            limits = c(-max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2]))))
                      , max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2])))))) +
  scale_y_continuous(
           limits = c(-max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2]))))
                   , max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2])))))) +
  labs(title = "Bayes", x = expression(PC[1]), y = expression(PC[2])) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))

print(BiplotBayes3)

Plot1Mu <-
  ggplot(data = fm3$mu1, mapping = aes(x = 1:nrow(fm3$mu1), y = mu)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(mu), x = "Iterations") +
  theme_bw()
print(Plot1Mu)

Plot2Mu <-
  ggplot(data = fm3$mu1, mapping = aes(mu)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(mu)) +
  theme_bw()
print(Plot2Mu)


Plot1Sigma2 <-
  ggplot(data = fm3$tau1, mapping = aes(x = 1:nrow(fm3$tau1), y = tau)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(sigma^2), x = "Iterations") +
  theme_bw()
print(Plot1Sigma2)


Plot2Sigma2 <-
  ggplot(data = fm3$tau1, mapping = aes(tau)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(sigma^2)) +
  theme_bw()
print(Plot2Sigma2)


# Plot of Alphas
Plot1Alpha1 <-
  ggplot(data = fm3$tao1, mapping = aes(x = 1:nrow(fm3$tao1), y = tao1)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(alpha[1]), x = "Iterations") +
  theme_bw()
print(Plot1Alpha1)

Plot2Alpha1 <-
  ggplot(data = fm3$tao1, mapping = aes(tao1)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(alpha[1])) +
  theme_bw()
print(Plot2Alpha1)

Plot1Alpha2 <-
  ggplot(data = fm3$tao1, mapping = aes(x = 1:nrow(fm3$tao1), y = tao2)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(alpha[2]), x = "Iterations") +
  theme_bw()
print(Plot1Alpha2)

Plot2Alpha2 <-
  ggplot(data = fm3$tao1, mapping = aes(tao2)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(alpha[2])) +
  theme_bw()
print(Plot2Alpha2)

# Plot of Betas
Plot1Beta1 <-
  ggplot(data = fm3$delta1, mapping = aes(x = 1:nrow(fm3$delta1), y = delta1)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(beta[1]), x = "Iterations") +
  theme_bw()
print(Plot1Beta1)

Plot2Beta1 <-
  ggplot(data = fm3$delta1, mapping = aes(delta1)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(beta[1])) +
  theme_bw()
print(Plot2Beta1)


Plot1Beta2 <-
  ggplot(data = fm3$delta1, mapping = aes(x = 1:nrow(fm3$delta1), y = delta2)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(beta[2]), x = "Iterations") +
  theme_bw()
print(Plot1Beta2)

Plot2Beta2 <-
  ggplot(data = fm3$delta1, mapping = aes(delta2)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(beta[2])) +
  theme_bw()
print(Plot2Beta2)


Plot1Beta3 <-
  ggplot(data = fm3$delta1, mapping = aes(x = 1:nrow(fm3$delta1), y = delta3)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(beta[3]), x = "Iterations") +
  theme_bw()
print(Plot1Beta3)

Plot2Beta3 <-
  ggplot(data = fm3$delta1, mapping = aes(delta3)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(beta[3])) +
  theme_bw()
print(Plot2Beta3)

## End(Not run)


Data for Genotypes by Environment Interaction (GEI)

Description

cultivo2008 is used for performing Genotypes by Environment Interaction (GEI) Analysis.

Usage

data(cultivo2008)

Format

A data.frame 1320 obs. of 6 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Diego Jarquin (diego.jarquin@gmail.com)

  3. Sergio Perez-Elizalde (sergiop@colpos.mx)

  4. Juan Burgueño (j.burgueno@cgiar.org)

  5. Jose Crossa (j.crossa@cgiar.org)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples

data(cultivo2008)


Data for Genotypes by Environment Interaction (GEI)

Description

cultivo2009 is used for performing Genotypes by Environment Interaction (GEI) Analysis.

Usage

data(cultivo2009)

Format

A data.frame 1320 obs. of 6 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Diego Jarquin (diego.jarquin@gmail.com)

  3. Sergio Perez-Elizalde (sergiop@colpos.mx)

  4. Juan Burgueño (j.burgueno@cgiar.org)

  5. Jose Crossa (j.crossa@cgiar.org)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples

data(cultivo2009)


Environment Effects

Description

Calcuates Environment Effects

Usage

## Default S3 method:
e_eff(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Environment Effects

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
e_eff(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )



Genotype Effects

Description

Calcuates Genotype Effects

Usage

## Default S3 method:
g_eff(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Genotype Effects

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
g_eff(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )



AMMI of Genotype by Environment Interaction Model

Description

Performs Additive Main Effects and Multiplication Interaction Analysis of Genotype by Environment Interaction Model

Usage

ge_ammi(.data, .y, .gen, .env, .rep)

## Default S3 method:
ge_ammi(.data, .y, .gen, .env, .rep)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

.rep

Replication Factor

Value

Genotype by Environment Interaction Model

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
fm1 <-
   ge_ammi(
      .data  = cultivo2008
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )


data(cultivo2009)
fm2 <-
   ge_ammi(
      .data  = cultivo2009
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )



Genotype by Environment Interaction Effects

Description

Calcuates Genotype by Environment Interaction Effects

Usage

## Default S3 method:
ge_eff(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Genotype by Environment Interaction Effects

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
ge_eff(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )



Genotype by Environment Interaction Means

Description

Calcuates Genotype by Environment Interaction Means

Usage

## Default S3 method:
ge_mean(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Genotype by Environment Interaction Means

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
ge_mean(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )



Genotype by Environment Interaction Model

Description

Calcuates Genotype by Environment Interaction Model

Usage

ge_model(.data, .y, .gen, .env, .rep)

## Default S3 method:
ge_model(.data, .y, .gen, .env, .rep)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

.rep

Replication Factor

Value

Genotype by Environment Interaction Model

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
fm1 <-
   ge_model(
      .data  = cultivo2008
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )



Genotype by Environment Interaction Variances

Description

Calcuates Genotype by Environment Interaction Variances

Usage

## Default S3 method:
ge_var(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Genotype by Environment Interaction Variances

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

Examples


data(cultivo2008)
ge_var(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )



k Matrix

Description

Gives k matrix

Usage

matrix_k(n)

## Default S3 method:
matrix_k(n)

Arguments

n

Number of columns

Value

Matrix

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)


Orthogonal Normalization

Description

Perform Orthogonal Normalization of a matrix

Usage

orthnorm(u = NULL, basis = TRUE, norm = TRUE)

## Default S3 method:
orthnorm(u = NULL, basis = TRUE, norm = TRUE)

Arguments

u

Matrix

basis

Logical argument by default TRUE

norm

Logical argument by default TRUE

Value

Matrix

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

References

Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.