The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(barrks)
library(tidyverse)
library(terra)
# function to unify the appearance of raster plots
my_rst_plot <- function(rst, ...) {
plot(rst, mar = c(0.2, 0.1, 2, 5),
axes = FALSE, box = TRUE, nr = 1,
cex.main = 1.9, plg = list(cex = 1.8), ...)
}
In this vignette, the sample data delivered with barrks
is used to calculate the phenology with all models available in the
package. Note that the daylength threshold for diapause initiation of
the Jönsson model is adapted to Central Europe according to Baier, Pennerstorfer, and Schopf (2007).
data <- barrks_data()
# calculate phenology
phenos <- list('phenips-clim' = phenology('phenips-clim', data),
'phenips' = phenology('phenips', data),
'rity' = phenology('rity', data),
'lange' = phenology('lange', data),
# customize the Jönsson model for Central Europe
'joensson' = phenology(model('joensson', daylength_dia = 14.5), data),
'bso' = bso_phenology(.data = data) %>% bso_translate_phenology(),
'chapy' = phenology('chapy', data))
barrks
provides different functions to examine the
results of the phenology calculations. This section describes the
application of the basic functions that return spatial outputs.
The onset of infestation, initiation of diapause and the
frost-induced mortality are described as the corresponding day of year.
That data can be attained via get_onset_rst()
,
get_diapause_rst()
or get_mortality_rst()
. As
some models have not all submodels implemented and
terra::panel()
does not allow adding empty rasters, a
workaround-function is defined to plot the the respective submodel
outputs. Additionally, it draws the borders of the area of interest.
plot_doy_panel <- function(x) {
aoi <- as.polygons(data[[1]][[1]] * 0)
draw_aoi_borders <- function(i) {
if(empty[i]) polys(aoi, lwd = 2, col = 'white')
else polys(aoi, lwd = 2)
}
# replace NULL by a raster with values in the overall range to not affect the legend
# the raster will be overplotted by `draw_aoi_borders()`
rst_tmp <- data[[1]][[1]] * 0 + min(minmax(rast(discard(x, is.null)))[1,])
empty <- map_lgl(x, \(y) is.null(y))
walk(which(empty), \(i) x[[i]] <<- rst_tmp)
panel(rast(x),
names(x),
col = viridisLite::viridis(100, direction = -1),
axes = FALSE,
box = TRUE,
loc.main = 'topright',
fun = draw_aoi_borders,
cex.main = 1.9,
plg = list(cex = 1.8))
}
plot_doy_panel(map(phenos, \(p) get_onset_rst(p)))
plot_doy_panel(map(phenos, \(p) get_diapause_rst(p)))
plot_doy_panel(map(phenos, \(p) get_mortality_rst(p)[[1]]))
To get an overview of the establishment of generations, it is
possible to plot the prevailing generations on different dates using
get_generations_rst()
and my_rst_plot()
.
# dates to plot
dates <- c('2015-04-15', '2015-06-15', '2015-08-15', '2015-10-15')
# walk through all phenology models
walk(names(phenos), \(key) {
p <- phenos[[key]]
# plot generations of current model
get_generations_rst(p, dates) %>% my_rst_plot(main = paste0(key, '-', dates))
})
To plot the development diagrams of particular raster cells, stations
can be defined by specifying their cell numbers. To get the stations’
coordinates, terra::xyFromCell
can be used.
# plot the locations of the stations
rst_aoi <- data[[1]][[1]] * 0
stations <- stations_create(c('station 1', 'station 2'), c(234 345))
station_coords <- vect(xyFromCell(rst_aoi, stations_cells(stations)))
plot(rst_aoi, col = '#AAAAAA', legend = FALSE, axes = FALSE, box = TRUE)
plot(station_coords, col = 'red', pch = 4, add = TRUE)
text(station_coords, names(stations), col = 'black', pos = 2)
The stations should be passed to
plot_development_diagram()
to get the desired plots. Here,
only the models PHENIPS-Clim and PHENIPS are plotted to reduce the
complexity of the diagrams.
# plot the development diagrams
limits <- as.Date(c('2015-04-01', '2015-12-31'))
models <- c('phenips-clim', 'phenips')
walk(1:length(stations), \(i) {
plot_development_diagram(phenos[models],
stations[i],
.lty = 1:length(models),
.group = FALSE,
xlim = limits)
})
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.