The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Bagged OutlierTrees is an explainable unsupervised outlier detection method based on an ensemble implementation of the existing OutlierTree procedure (Cortes, 2020). This implementation takes advantage of bootstrap aggregating (bagging) to improve robustness by reducing the possible masking effect and subsequent high variance (similarly to Isolation Forest), hence the name "Bagged OutlierTrees". To learn more about the base procedure OutlierTree (Cortes, 2020), please refer to <doi:10.48550/arXiv.2001.00636>.
Version: | 1.0.0 |
Depends: | R (≥ 3.5.0) |
Imports: | outliertree, dplyr, doSNOW, parallel, foreach, rlist, data.table |
Published: | 2021-07-06 |
DOI: | 10.32614/CRAN.package.bagged.outliertrees |
Author: | Rafael Santos [aut, cre] |
Maintainer: | Rafael Santos <rafael.jpsantos at outlook.com> |
BugReports: | https://github.com/RafaJPSantos/bagged.outliertrees/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/RafaJPSantos/bagged.outliertrees |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | bagged.outliertrees results |
Reference manual: | bagged.outliertrees.pdf |
Package source: | bagged.outliertrees_1.0.0.tar.gz |
Windows binaries: | r-devel: bagged.outliertrees_1.0.0.zip, r-release: bagged.outliertrees_1.0.0.zip, r-oldrel: bagged.outliertrees_1.0.0.zip |
macOS binaries: | r-release (arm64): bagged.outliertrees_1.0.0.tgz, r-oldrel (arm64): bagged.outliertrees_1.0.0.tgz, r-release (x86_64): bagged.outliertrees_1.0.0.tgz, r-oldrel (x86_64): bagged.outliertrees_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=bagged.outliertrees to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.