The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

autogam

Lifecycle: experimental CRAN status R-CMD-check

AutoGAM is a wrapper package for mgcv that makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, AutoGAM tries to automate as much as possible the procedure of configuring a highly accurate GAM at reasonably high speed, even for large datasets.

Installation

You can install the development version of autogam like so:

# install.packages("devtools")
devtools::install_github("tripartio/autogam")

Example

Here’s a simple example using the mtcars dataset to predict mpg:

library(autogam)

ag <- autogam(mtcars, 'mpg')

summary(ag)
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> Formula:
#> mpg ~ cyl + s(disp) + s(hp) + s(drat) + s(wt) + s(qsec) + vs + 
#>     am + gear + s(carb, k = 3)
#> 
#> Parametric coefficients:
#>             Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)   7.3453     5.3267   1.379   0.2671  
#> cyl           0.5814     0.5264   1.104   0.3547  
#> vs           10.3131     1.7012   6.062   0.0107 *
#> am            4.9605     0.8490   5.842   0.0118 *
#> gear          0.7107     0.7857   0.905   0.4362  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Approximate significance of smooth terms:
#>           edf Ref.df      F p-value   
#> s(disp) 1.000  1.000  4.984  0.1117   
#> s(hp)   8.739  8.868 17.975  0.0170 * 
#> s(drat) 1.987  2.220 16.275  0.0395 * 
#> s(wt)   1.764  2.083  2.669  0.1891   
#> s(qsec) 8.904  8.970 28.950  0.0089 **
#> s(carb) 1.785  1.876  1.382  0.4412   
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> R-sq.(adj) =  0.996   Deviance explained =  100%
#> GCV = 1.7279  Scale est. = 0.1523    n = 32

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.