The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(autoScorecard)
#Quick Modeling
##step 1: Import Data
<- read.csv(system.file("extdata", "accepts.csv", package = "autoScorecard" ))
accepts
##step 2: Create scorecard
##Considering efficiency and readability, many parameters of this automatic modeling function
##are default, which requires high-precision modeling and needs to be manually established step by step
<- auto_scorecard( feature = accepts[1:2000,], key_var= "application_id",
auto_scorecard1 y_var = "bad_ind",sample_rate = 0.7, points0 = 600, odds0=1/20, pdo = 50,
max_depth =3,tree_p = 0.1, missing_rate = 0, single_var_rate = 1, iv_set=0.02,
char_to_number = TRUE , na.omit = TRUE)
#> Start: AIC=873.27
#> bad_ind ~ application_id + vehicle_year + vehicle_make + tot_derog +
#> tot_tr + age_oldest_tr + tot_open_tr + tot_rev_tr + tot_rev_debt +
#> tot_rev_line + rev_util + fico_score + purch_price + msrp +
#> down_pyt + loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - application_id 1 831.27 871.27
#> - purch_price 1 831.40 871.40
#> - msrp 1 832.05 872.05
#> - tot_tr 1 832.12 872.12
#> - tot_open_tr 1 832.40 872.40
#> - vehicle_year 1 832.95 872.95
#> - tot_rev_line 1 833.09 873.09
#> <none> 831.27 873.27
#> - tot_income 1 833.94 873.94
#> - vehicle_make 1 834.31 874.31
#> - down_pyt 1 834.90 874.90
#> - loan_term 1 835.25 875.25
#> - tot_rev_tr 1 836.28 876.28
#> - veh_mileage 1 836.68 876.68
#> - loan_amt 1 836.72 876.72
#> - age_oldest_tr 1 837.63 877.63
#> - tot_derog 1 838.33 878.33
#> - tot_rev_debt 1 839.33 879.33
#> - rev_util 1 844.21 884.21
#> - ltv 1 848.13 888.13
#> - fico_score 1 853.94 893.94
#>
#> Step: AIC=871.27
#> bad_ind ~ vehicle_year + vehicle_make + tot_derog + tot_tr +
#> age_oldest_tr + tot_open_tr + tot_rev_tr + tot_rev_debt +
#> tot_rev_line + rev_util + fico_score + purch_price + msrp +
#> down_pyt + loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - purch_price 1 831.40 869.40
#> - msrp 1 832.05 870.05
#> - tot_tr 1 832.12 870.12
#> - tot_open_tr 1 832.40 870.40
#> - vehicle_year 1 832.95 870.95
#> - tot_rev_line 1 833.09 871.09
#> <none> 831.27 871.27
#> - tot_income 1 833.94 871.94
#> - vehicle_make 1 834.31 872.31
#> - down_pyt 1 834.90 872.90
#> - loan_term 1 835.25 873.25
#> + application_id 1 831.27 873.27
#> - tot_rev_tr 1 836.29 874.29
#> - veh_mileage 1 836.68 874.68
#> - loan_amt 1 836.72 874.72
#> - age_oldest_tr 1 837.63 875.63
#> - tot_derog 1 838.33 876.33
#> - tot_rev_debt 1 839.34 877.34
#> - rev_util 1 844.23 882.23
#> - ltv 1 848.17 886.17
#> - fico_score 1 853.98 891.98
#>
#> Step: AIC=869.4
#> bad_ind ~ vehicle_year + vehicle_make + tot_derog + tot_tr +
#> age_oldest_tr + tot_open_tr + tot_rev_tr + tot_rev_debt +
#> tot_rev_line + rev_util + fico_score + msrp + down_pyt +
#> loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - tot_tr 1 832.30 868.30
#> - tot_open_tr 1 832.56 868.56
#> - msrp 1 832.67 868.67
#> - vehicle_year 1 833.01 869.01
#> - tot_rev_line 1 833.23 869.23
#> <none> 831.40 869.40
#> - tot_income 1 834.19 870.19
#> - vehicle_make 1 834.44 870.44
#> - down_pyt 1 835.01 871.01
#> + purch_price 1 831.27 871.27
#> + application_id 1 831.40 871.40
#> - loan_term 1 835.48 871.48
#> - tot_rev_tr 1 836.36 872.36
#> - veh_mileage 1 836.91 872.91
#> - age_oldest_tr 1 837.75 873.75
#> - tot_derog 1 838.40 874.40
#> - loan_amt 1 838.49 874.49
#> - tot_rev_debt 1 839.57 875.57
#> - rev_util 1 844.38 880.38
#> - ltv 1 848.45 884.45
#> - fico_score 1 854.27 890.27
#>
#> Step: AIC=868.3
#> bad_ind ~ vehicle_year + vehicle_make + tot_derog + age_oldest_tr +
#> tot_open_tr + tot_rev_tr + tot_rev_debt + tot_rev_line +
#> rev_util + fico_score + msrp + down_pyt + loan_term + loan_amt +
#> ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - tot_open_tr 1 833.16 867.16
#> - msrp 1 833.62 867.62
#> - vehicle_year 1 833.94 867.94
#> <none> 832.30 868.30
#> - vehicle_make 1 835.20 869.20
#> + tot_tr 1 831.40 869.40
#> - tot_income 1 835.52 869.52
#> - tot_rev_line 1 835.68 869.68
#> - down_pyt 1 835.93 869.93
#> + purch_price 1 832.12 870.12
#> + application_id 1 832.30 870.30
#> - loan_term 1 836.40 870.40
#> - tot_rev_tr 1 837.03 871.03
#> - veh_mileage 1 837.89 871.89
#> - tot_derog 1 838.45 872.45
#> - loan_amt 1 839.30 873.30
#> - age_oldest_tr 1 840.67 874.67
#> - tot_rev_debt 1 840.80 874.80
#> - rev_util 1 845.37 879.37
#> - ltv 1 849.58 883.58
#> - fico_score 1 854.62 888.62
#>
#> Step: AIC=867.16
#> bad_ind ~ vehicle_year + vehicle_make + tot_derog + age_oldest_tr +
#> tot_rev_tr + tot_rev_debt + tot_rev_line + rev_util + fico_score +
#> msrp + down_pyt + loan_term + loan_amt + ltv + tot_income +
#> veh_mileage
#>
#> Df Deviance AIC
#> - msrp 1 834.49 866.49
#> - vehicle_year 1 835.01 867.01
#> <none> 833.16 867.16
#> - tot_income 1 836.11 868.11
#> - vehicle_make 1 836.14 868.14
#> - tot_rev_line 1 836.20 868.20
#> + tot_open_tr 1 832.30 868.30
#> + tot_tr 1 832.56 868.56
#> - down_pyt 1 836.77 868.77
#> + purch_price 1 832.96 868.96
#> - tot_rev_tr 1 837.03 869.03
#> + application_id 1 833.16 869.16
#> - loan_term 1 837.25 869.25
#> - veh_mileage 1 838.82 870.82
#> - tot_derog 1 839.20 871.20
#> - loan_amt 1 839.94 871.94
#> - tot_rev_debt 1 841.17 873.17
#> - age_oldest_tr 1 841.29 873.29
#> - rev_util 1 847.28 879.28
#> - ltv 1 850.90 882.90
#> - fico_score 1 855.29 887.29
#>
#> Step: AIC=866.49
#> bad_ind ~ vehicle_year + vehicle_make + tot_derog + age_oldest_tr +
#> tot_rev_tr + tot_rev_debt + tot_rev_line + rev_util + fico_score +
#> down_pyt + loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - vehicle_year 1 835.55 865.55
#> <none> 834.49 866.49
#> + msrp 1 833.16 867.16
#> + tot_open_tr 1 833.62 867.62
#> - vehicle_make 1 837.66 867.66
#> - tot_rev_line 1 837.67 867.67
#> - tot_income 1 837.68 867.68
#> + purch_price 1 833.71 867.71
#> + tot_tr 1 833.85 867.85
#> - tot_rev_tr 1 838.25 868.25
#> + application_id 1 834.49 868.49
#> - down_pyt 1 838.76 868.76
#> - loan_term 1 839.15 869.15
#> - veh_mileage 1 840.23 870.23
#> - tot_derog 1 840.24 870.24
#> - age_oldest_tr 1 842.58 872.58
#> - tot_rev_debt 1 842.89 872.89
#> - loan_amt 1 843.20 873.20
#> - rev_util 1 848.45 878.45
#> - ltv 1 851.91 881.91
#> - fico_score 1 857.15 887.15
#>
#> Step: AIC=865.55
#> bad_ind ~ vehicle_make + tot_derog + age_oldest_tr + tot_rev_tr +
#> tot_rev_debt + tot_rev_line + rev_util + fico_score + down_pyt +
#> loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> <none> 835.55 865.55
#> + vehicle_year 1 834.49 866.49
#> + tot_open_tr 1 834.51 866.51
#> - vehicle_make 1 838.58 866.58
#> - tot_rev_line 1 838.60 866.60
#> - tot_income 1 838.75 866.75
#> + tot_tr 1 834.93 866.93
#> + msrp 1 835.01 867.01
#> + purch_price 1 835.15 867.15
#> - tot_rev_tr 1 839.49 867.49
#> + application_id 1 835.55 867.55
#> - down_pyt 1 839.62 867.62
#> - loan_term 1 840.07 868.07
#> - veh_mileage 1 840.39 868.39
#> - tot_derog 1 841.35 869.35
#> - loan_amt 1 843.51 871.51
#> - age_oldest_tr 1 843.60 871.60
#> - tot_rev_debt 1 843.94 871.94
#> - rev_util 1 849.68 877.68
#> - ltv 1 853.00 881.00
#> - fico_score 1 857.67 885.67
#Step-by-Step Modeling
##step 1: Import Data
<- read.csv(system.file("extdata", "accepts.csv", package = "autoScorecard" ))
accepts
##step 2: Data Description
<- data_detect( df = accepts, key_var = c("application_id","account_number") ,
data_detect1 y_var = "bad_ind" )
head(data_detect1)
#> variable class nrow missing_rate unique_count identical_rate min
#> 1 vehicle_year integer 5845 0.0001710864 21 0.356372968 0
#> 2 vehicle_make character 5845 0.0000000000 155 0.190248075 NA
#> 3 bankruptcy_ind character 5845 0.0000000000 3 0.886227545 NA
#> 4 tot_derog integer 5845 0.0364414029 30 0.488793841 0
#> 5 tot_tr integer 5845 0.0364414029 68 0.039349872 0
#> 6 age_oldest_tr integer 5845 0.0369546621 461 0.007869974 1
#> p25 p50 p75 max mean sd cv
#> 1 1997 1999 2000 9999 1901.793634 488.024392 0.2566127
#> 2 NA NA NA NA NA NA NA
#> 3 NA NA NA NA NA NA NA
#> 4 0 0 2 32 1.910156 3.274744 1.7143852
#> 5 9 16 24 77 17.084695 10.814056 0.6329675
#> 6 78 137 205 588 154.304317 99.940540 0.6476847
##step 3: Data Filtering
<- filter_var( df = accepts , key_var = c("application_id","account_number"), y_var = "bad_ind" ,
featuremissing_rate = 0 , single_var_rate = 1 ,
iv_set = 0.02, char_to_number = TRUE , na.omit = TRUE )
##step 4: Select Training Sample
= sort( sample( nrow( feature ), nrow( feature )*0.7))
d <- feature[d,]
train <- feature[-d,]
test
##step 5: Data Distribution Comparison
comparison_two_data( df1 = train , df2 = test ,key_var = c("application_id","account_number"), y_var="bad_ind")
##step 6: Automatic binning of data
##Decision Tree Binning
<- bins_tree(df= train, key_var= c("application_id","account_number"), y_var="bad_ind",
treebins_train max_depth=3, p=0.1)
##Equal Frequency Binning
<- binning_eqfreq( df= train, feat= 'tot_derog', label = 'bad_ind', nbins = 3)
binning_eqfreq1
##Equal Width Binning
<- binning_eqwid( df = train, feat = 'tot_derog', label = 'bad_ind', nbins = 3)
binning_eqwid1
##The K-means Binning
<- binning_kmean( df = train, feat= 'loan_term', label = 'bad_ind', nbins = 3)
binning_kmean1
##Chi-Square Binning
<- bins_chim( df = train[1:200,], key_var = "application_id", y_var = "bad_ind" , alpha=0.1 )
bins_chim1
##Unsupervised Automatic Binning Function
<-bins_unsupervised( df = feature[1:200,] , id="application_id" , label="bad_ind" ,
f_1 methods = c("k_means", "equal_width","equal_freq") , bin_nums=5 )
##The Combination of Two Bins Produces the Best Binning Result
<- best_iv( df=f_1 ,bin=c('bins') , method = c('method') ,variable= c( "variable" ) ,label_iv='miv' )
best1 <- best_vs( df1 = treebins_train[,-c(3)], df2 = best1[,-c(1:2)] ,variable="variable" ,label_iv='miv' )
vs1
##step 7: Replace Feature Data by Binning Template
<- rep_woe( df= train ,key_var="application_id", y_var="bad_ind" , tool=treebins_train ,
woe_train var_label= "variable",col_woe='woe', lower='lower' ,upper ='upper' )
<- rep_woe( df= test ,key_var="application_id", y_var="bad_ind" , tool=treebins_train ,
woe_test var_label= "variable",col_woe='woe', lower='lower' ,upper ='upper' )
##step 8: Modeling
<-stats::glm(bad_ind~.,family=stats::binomial(link='logit'),data= woe_train)
lg
<-stats::step(lg,direction = "both")
lg_both#> Start: AIC=2478.97
#> bad_ind ~ application_id + account_number + vehicle_year + vehicle_make +
#> tot_derog + tot_tr + age_oldest_tr + tot_open_tr + tot_rev_tr +
#> tot_rev_debt + tot_rev_line + rev_util + fico_score + purch_price +
#> msrp + down_pyt + loan_term + loan_amt + ltv + tot_income +
#> veh_mileage
#>
#> Df Deviance AIC
#> - account_number 1 2435.0 2477.0
#> - vehicle_make 1 2435.0 2477.0
#> - tot_rev_tr 1 2435.0 2477.0
#> - msrp 1 2435.3 2477.3
#> - tot_income 1 2436.3 2478.3
#> - application_id 1 2436.9 2478.9
#> <none> 2435.0 2479.0
#> - tot_tr 1 2437.0 2479.0
#> - age_oldest_tr 1 2437.4 2479.4
#> - tot_rev_debt 1 2437.6 2479.6
#> - tot_open_tr 1 2438.4 2480.4
#> - tot_rev_line 1 2438.5 2480.5
#> - loan_term 1 2438.6 2480.6
#> - purch_price 1 2439.1 2481.1
#> - loan_amt 1 2440.4 2482.4
#> - rev_util 1 2441.5 2483.5
#> - tot_derog 1 2442.1 2484.1
#> - vehicle_year 1 2442.4 2484.4
#> - down_pyt 1 2443.7 2485.7
#> - veh_mileage 1 2451.1 2493.1
#> - ltv 1 2475.7 2517.7
#> - fico_score 1 2513.7 2555.7
#>
#> Step: AIC=2476.98
#> bad_ind ~ application_id + vehicle_year + vehicle_make + tot_derog +
#> tot_tr + age_oldest_tr + tot_open_tr + tot_rev_tr + tot_rev_debt +
#> tot_rev_line + rev_util + fico_score + purch_price + msrp +
#> down_pyt + loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - vehicle_make 1 2435.0 2475.0
#> - tot_rev_tr 1 2435.0 2475.0
#> - msrp 1 2435.3 2475.3
#> - tot_income 1 2436.3 2476.3
#> - application_id 1 2436.9 2476.9
#> <none> 2435.0 2477.0
#> - tot_tr 1 2437.0 2477.0
#> - age_oldest_tr 1 2437.4 2477.4
#> - tot_rev_debt 1 2437.6 2477.6
#> - tot_open_tr 1 2438.4 2478.4
#> - tot_rev_line 1 2438.6 2478.6
#> - loan_term 1 2438.7 2478.7
#> + account_number 1 2435.0 2479.0
#> - purch_price 1 2439.2 2479.2
#> - loan_amt 1 2440.5 2480.5
#> - rev_util 1 2441.6 2481.6
#> - tot_derog 1 2442.1 2482.1
#> - vehicle_year 1 2442.4 2482.4
#> - down_pyt 1 2443.7 2483.7
#> - veh_mileage 1 2451.1 2491.1
#> - ltv 1 2475.8 2515.8
#> - fico_score 1 2513.9 2553.9
#>
#> Step: AIC=2475
#> bad_ind ~ application_id + vehicle_year + tot_derog + tot_tr +
#> age_oldest_tr + tot_open_tr + tot_rev_tr + tot_rev_debt +
#> tot_rev_line + rev_util + fico_score + purch_price + msrp +
#> down_pyt + loan_term + loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - tot_rev_tr 1 2435.0 2473.0
#> - msrp 1 2435.3 2473.3
#> - tot_income 1 2436.3 2474.3
#> - application_id 1 2437.0 2475.0
#> <none> 2435.0 2475.0
#> - tot_tr 1 2437.0 2475.0
#> - age_oldest_tr 1 2437.4 2475.4
#> - tot_rev_debt 1 2437.6 2475.6
#> - tot_open_tr 1 2438.5 2476.5
#> - tot_rev_line 1 2438.6 2476.6
#> - loan_term 1 2438.7 2476.7
#> + vehicle_make 1 2435.0 2477.0
#> + account_number 1 2435.0 2477.0
#> - purch_price 1 2439.2 2477.2
#> - loan_amt 1 2440.5 2478.5
#> - rev_util 1 2441.6 2479.6
#> - tot_derog 1 2442.1 2480.1
#> - vehicle_year 1 2442.6 2480.6
#> - down_pyt 1 2443.7 2481.7
#> - veh_mileage 1 2451.2 2489.2
#> - ltv 1 2476.1 2514.1
#> - fico_score 1 2514.1 2552.1
#>
#> Step: AIC=2473.04
#> bad_ind ~ application_id + vehicle_year + tot_derog + tot_tr +
#> age_oldest_tr + tot_open_tr + tot_rev_debt + tot_rev_line +
#> rev_util + fico_score + purch_price + msrp + down_pyt + loan_term +
#> loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - msrp 1 2435.4 2471.4
#> - tot_income 1 2436.3 2472.3
#> - tot_tr 1 2437.0 2473.0
#> - application_id 1 2437.0 2473.0
#> <none> 2435.0 2473.0
#> - age_oldest_tr 1 2437.5 2473.5
#> - tot_rev_debt 1 2437.7 2473.7
#> - tot_open_tr 1 2438.6 2474.6
#> - tot_rev_line 1 2438.7 2474.7
#> - loan_term 1 2438.8 2474.8
#> + tot_rev_tr 1 2435.0 2475.0
#> + vehicle_make 1 2435.0 2475.0
#> + account_number 1 2435.0 2475.0
#> - purch_price 1 2439.2 2475.2
#> - loan_amt 1 2440.5 2476.5
#> - tot_derog 1 2442.1 2478.1
#> - rev_util 1 2442.4 2478.4
#> - vehicle_year 1 2442.6 2478.6
#> - down_pyt 1 2443.8 2479.8
#> - veh_mileage 1 2451.2 2487.2
#> - ltv 1 2476.2 2512.2
#> - fico_score 1 2515.8 2551.8
#>
#> Step: AIC=2471.39
#> bad_ind ~ application_id + vehicle_year + tot_derog + tot_tr +
#> age_oldest_tr + tot_open_tr + tot_rev_debt + tot_rev_line +
#> rev_util + fico_score + purch_price + down_pyt + loan_term +
#> loan_amt + ltv + tot_income + veh_mileage
#>
#> Df Deviance AIC
#> - tot_income 1 2436.6 2470.6
#> - tot_tr 1 2437.3 2471.3
#> - application_id 1 2437.4 2471.4
#> <none> 2435.4 2471.4
#> - age_oldest_tr 1 2437.8 2471.8
#> - tot_rev_debt 1 2438.0 2472.0
#> - tot_open_tr 1 2438.9 2472.9
#> - loan_term 1 2439.0 2473.0
#> + msrp 1 2435.0 2473.0
#> - tot_rev_line 1 2439.1 2473.1
#> - purch_price 1 2439.3 2473.3
#> + tot_rev_tr 1 2435.3 2473.3
#> + vehicle_make 1 2435.4 2473.4
#> + account_number 1 2435.4 2473.4
#> - loan_amt 1 2440.6 2474.6
#> - tot_derog 1 2442.5 2476.5
#> - rev_util 1 2442.7 2476.7
#> - vehicle_year 1 2443.3 2477.3
#> - down_pyt 1 2444.3 2478.3
#> - veh_mileage 1 2451.7 2485.7
#> - ltv 1 2476.2 2510.2
#> - fico_score 1 2515.9 2549.9
#>
#> Step: AIC=2470.6
#> bad_ind ~ application_id + vehicle_year + tot_derog + tot_tr +
#> age_oldest_tr + tot_open_tr + tot_rev_debt + tot_rev_line +
#> rev_util + fico_score + purch_price + down_pyt + loan_term +
#> loan_amt + ltv + veh_mileage
#>
#> Df Deviance AIC
#> <none> 2436.6 2470.6
#> - application_id 1 2438.7 2470.7
#> - tot_tr 1 2438.8 2470.8
#> - age_oldest_tr 1 2439.3 2471.3
#> - tot_rev_debt 1 2439.3 2471.3
#> + tot_income 1 2435.4 2471.4
#> - tot_open_tr 1 2440.2 2472.2
#> - loan_term 1 2440.3 2472.3
#> + msrp 1 2436.3 2472.3
#> + tot_rev_tr 1 2436.6 2472.6
#> + vehicle_make 1 2436.6 2472.6
#> + account_number 1 2436.6 2472.6
#> - tot_rev_line 1 2440.8 2472.8
#> - purch_price 1 2441.0 2473.0
#> - loan_amt 1 2441.6 2473.6
#> - tot_derog 1 2443.6 2475.6
#> - rev_util 1 2443.6 2475.6
#> - vehicle_year 1 2444.1 2476.1
#> - down_pyt 1 2445.6 2477.6
#> - veh_mileage 1 2452.8 2484.8
#> - ltv 1 2478.4 2510.4
#> - fico_score 1 2517.9 2549.9
<-stats::predict(lg_both,woe_test)
logit$lg_both_p<-exp(logit)/(1+exp(logit))
woe_test
<- ROCR::prediction(woe_test$lg_both_p, woe_test$bad_ind)
pred_both <- ROCR::performance(pred_both,"tpr","fpr")
perf_both
##step 9: Correlation Diagram
= (lg_both$coefficients)
coe <-stats::cor( Xvar_df<- woe_train[-which(colnames(feature) %in% c("application_id","account_number","bad_ind"))])
cor1
::corrplot(cor1)
corrplot::corrplot(cor1,method = "number") corrplot
##step 10: Manually Input Parameters to Generate Scorecards
##scorecard
<-noauto_scorecard( bins_card= woe_test, fit= lg_both,bins_woe=treebins_train ,points0 = 600,
Scoreodds0 = 1/20, pdo = 50 ,k = 2)
<-noauto_scorecard( bins_card= woe_train, fit= lg_both,bins_woe=treebins_train ,points0 = 600,
Score_2odds0 = 1/20, pdo = 50 ,k = 3)
##scorecard2
<-noauto_scorecard2( bins_card= woe_test, fit= lg_both,bins_woe=treebins_train ,points0 = 600,
Scoreodds0 = 1/20, pdo = 50 ,k = 2)
<-noauto_scorecard2( bins_card= woe_train, fit= lg_both,bins_woe=treebins_train ,points0 = 600,
Score_2odds0 = 1/20, pdo = 50 ,k = 3)
##step 11: PSI
<- Score_2$data_score
data_train <- Score$data_score
data_test <-psi_cal( df_train = data_train , df_test = data_test,feat='Score',label='bad_ind' , nbins=10) psi_1
##step 12: Data Painter
plot_board( label= woe_test$bad_ind, pred = woe_test$lg_both_p )
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.