The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
Version: | 2.0.1 |
Depends: | R (≥ 4.1) |
Imports: | rBayesianOptimization (≥ 1.2.0), xgboost (≥ 1.4.1.1), purrr (≥ 0.3.4), ggplot2 (≥ 3.3.5), readr (≥ 2.1.2), stringr (≥ 1.4.0), lubridate (≥ 1.7.10), narray (≥ 0.4.1.1), fANCOVA (≥ 0.6-1), imputeTS (≥ 3.2), scales (≥ 1.1.1), tictoc (≥ 1.0.1), modeest (≥ 2.4.0), moments (≥ 0.14), Metrics (≥ 0.1.4), parallel (≥ 4.1.1), utils (≥ 4.1.1), stats (≥ 4.1.1) |
Published: | 2022-03-23 |
DOI: | 10.32614/CRAN.package.audrex |
Author: | Giancarlo Vercellino |
Maintainer: | Giancarlo Vercellino <giancarlo.vercellino at gmail.com> |
License: | GPL-3 |
URL: | https://rpubs.com/giancarlo_vercellino/audrex |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | audrex results |
Reference manual: | audrex.pdf |
Package source: | audrex_2.0.1.tar.gz |
Windows binaries: | r-devel: audrex_2.0.1.zip, r-release: audrex_2.0.1.zip, r-oldrel: audrex_2.0.1.zip |
macOS binaries: | r-release (arm64): audrex_2.0.1.tgz, r-oldrel (arm64): audrex_2.0.1.tgz, r-release (x86_64): audrex_2.0.1.tgz, r-oldrel (x86_64): audrex_2.0.1.tgz |
Old sources: | audrex archive |
Please use the canonical form https://CRAN.R-project.org/package=audrex to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.