The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette
provides a quick demo of the
functionalities of the asus
package.
We will consider a two sample estimation problem where the goal is to estimate an \(n\) dimensional parameter \(\boldsymbol{\theta} =\boldsymbol{\theta}_x-\boldsymbol{\theta}_y\) based on observations \(X_i\sim N(\theta_{x,i},1)\) and \(Y_i\sim N(\theta_{y,i},1)\) where \(i=1,\ldots,n\).
# Parameter of interest
n<-500
set.seed(42)
theta.x<- c(matrix(0,1,400),runif(n-400,2,6))
set.seed(42)
theta.y<- c(matrix(0,1,450),runif(n-450,2,3))
theta<-theta.x-theta.y
#observations
v.x<- rep(1,n)
v.y<- rep(1,n)
set.seed(42)
x<-rnorm(n,theta.x,v.x)
set.seed(84)
y<-rnorm(n,theta.y,v.y)
# SureShrink estimator of theta
library("asus")
u<- x-y
v.u<- v.x+v.y
theta.ss<-sureshrink(u,v.u)$est
plot(1:n,theta,pch=19,ylab ="theta and theta.ss in red")
points(1:n,theta.ss,col="red",pch=19)
# EJS estimator of theta
theta.ejs<- ejs(u,v.u)
plot(1:n,theta,pch=19,ylab ="theta and theta.ejs in green")
points(1:n,theta.ejs,col="green",pch=19)
# side information on theta
s<- abs(x+y)
out<- asus(u,v.u,s)
# ASUS estimator
theta.asus<- out$est
plot(1:n,theta,pch=19,ylab ="theta and theta.asus in cyan")
points(1:n,theta.asus,col="cyan",pch=19)
# SURE estimate of risk of ASUS
mse.asus<-out$mse
# Grouping and thresholding parameters
tau<- out$tau
t.asus<- out$t
# Group sizes
n.asus<- out$size
You will notice that mse.asus = 187.4638917 < 816.9164054 = mse.ss due to the efficient incorporation of side information \(\boldsymbol{s}\) into the shrinkage estimation procedure.
Finally in the plot above, the green and the red dots represent the two groups constructed by ASUS using the side information in \(\boldsymbol{s}\).
i1<- (s<=tau)
i2<-(s>tau)
idx<-1:n
plot(idx[i1],u[i1],xlab="1:n",ylab="u",col="red",pch=19)#group 1
points(idx[i2],u[i2],col="green",pch=19)#group 2
Notice how the two groups differ with respect to their signal sparsity with group 1 (red) being more sparse than group 2 (green). Indeed, t.asus[1] = 3.4535719 > 0.4808622 = t.asus[2] and compare this with t.ss = 3.5255094.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.