The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

arulesNBMiner - Mining NB-Frequent Itemsets and NB-Precise Rules - R package

CRAN version CRAN RStudio mirror downloads Travis-CI Build Status AppVeyor Build Status

This R package extends package arules with NBMiner, an implementation of the model-based mining algorithm for mining NB-frequent itemsets presented in “Michael Hahsler. A model-based frequency constraint for mining associations from transaction data. Data Mining and Knowledge Discovery, 13(2):137-166, September 2006.” In addition an extension for NB-precise rules is implemented.

Installation

Stable CRAN version: install from within R with

install.packages("arulesNBMiner")

Current development version: Download package from AppVeyor or install from GitHub (needs devtools).

install_git("mhahsler/arulesNBMiner")

Usage

Estimate NBD model parameters

library(arulesNBMiner)
data("Agrawal")
param <- NBMinerParameters(Agrawal.db, pi=0.99, theta=0.5, maxlen=5,
     minlen=1, trim = 0, verb = TRUE, plot=TRUE) 
using Expectation Maximization for missing zero class
iteration = 1 , zero class = 2 , k = 1.08506 , m = 278.7137 
total items =  716 

Mine NB-frequent itemsets

itemsets_NB <- NBMiner(Agrawal.db, parameter = param, 
     control = list(verb = TRUE, debug=FALSE))
parameter specification:
   pi theta   n       k           a minlen maxlen rules
 0.99   0.5 716 1.08506 0.001515447      1      5 FALSE

algorithmic control:
 verbose debug
    TRUE FALSE

Depth-first NB-frequent itemset miner by Michael Hahsler
Database with 20000 transactions and 1000 unique items

3507 NB-frequent itemsets found.
inspect(head(itemsets_NB))
  items                                     precision
1 {item494,item525,item572,item765,item775} 1.0000000
2 {item398,item490,item848}                 1.0000000
3 {item292,item793,item816}                 1.0000000
4 {item229,item780}                         0.9964852
5 {item111,item149,item715}                 1.0000000
6 {item91,item171,item902}                  1.0000000

References

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.