The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This R package extends package arules with NBMiner, an implementation of the model-based mining algorithm for mining NB-frequent itemsets presented in “Michael Hahsler. A model-based frequency constraint for mining associations from transaction data. Data Mining and Knowledge Discovery, 13(2):137-166, September 2006.” In addition an extension for NB-precise rules is implemented.
Stable CRAN version: install from within R with
install.packages("arulesNBMiner")
Current development version: Download package from AppVeyor or install from GitHub (needs devtools).
install_git("mhahsler/arulesNBMiner")
Estimate NBD model parameters
library(arulesNBMiner)
data("Agrawal")
<- NBMinerParameters(Agrawal.db, pi=0.99, theta=0.5, maxlen=5,
param minlen=1, trim = 0, verb = TRUE, plot=TRUE)
using Expectation Maximization for missing zero class
iteration = 1 , zero class = 2 , k = 1.08506 , m = 278.7137
total items = 716
Mine NB-frequent itemsets
<- NBMiner(Agrawal.db, parameter = param,
itemsets_NB control = list(verb = TRUE, debug=FALSE))
parameter specification:
pi theta n k a minlen maxlen rules
0.99 0.5 716 1.08506 0.001515447 1 5 FALSE
algorithmic control:
verbose debug
TRUE FALSE
Depth-first NB-frequent itemset miner by Michael Hahsler
Database with 20000 transactions and 1000 unique items
3507 NB-frequent itemsets found.
inspect(head(itemsets_NB))
items precision
1 {item494,item525,item572,item765,item775} 1.0000000
2 {item398,item490,item848} 1.0000000
3 {item292,item793,item816} 1.0000000
4 {item229,item780} 0.9964852
5 {item111,item149,item715} 1.0000000
6 {item91,item171,item902} 1.0000000
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.