The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Adversarial random forests (ARFs) recursively partition data into fully factorized leaves, where features are jointly independent. The procedure is iterative, with alternating rounds of generation and discrimination. Data becomes increasingly realistic at each round, until original and synthetic samples can no longer be reliably distinguished. This is useful for several unsupervised learning tasks, such as density estimation and data synthesis. Methods for both are implemented in this package. ARFs naturally handle unstructured data with mixed continuous and categorical covariates. They inherit many of the benefits of random forests, including speed, flexibility, and solid performance with default parameters. For details, see Watson et al. (2022) <doi:10.48550/arXiv.2205.09435>.
Version: | 0.2.0 |
Imports: | data.table, ranger, foreach, truncnorm |
Suggests: | ggplot2, doParallel, mlbench, knitr, rmarkdown, tibble, testthat (≥ 3.0.0) |
Published: | 2024-01-24 |
DOI: | 10.32614/CRAN.package.arf |
Author: | Marvin N. Wright [aut, cre], David S. Watson [aut], Kristin Blesch [aut], Jan Kapar [aut] |
Maintainer: | Marvin N. Wright <cran at wrig.de> |
BugReports: | https://github.com/bips-hb/arf/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/bips-hb/arf, https://bips-hb.github.io/arf/ |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | arf results |
Reference manual: | arf.pdf |
Vignettes: |
Density Estimation |
Package source: | arf_0.2.0.tar.gz |
Windows binaries: | r-devel: arf_0.2.0.zip, r-release: arf_0.2.0.zip, r-oldrel: arf_0.2.0.zip |
macOS binaries: | r-release (arm64): arf_0.2.0.tgz, r-oldrel (arm64): arf_0.2.0.tgz, r-release (x86_64): arf_0.2.0.tgz, r-oldrel (x86_64): arf_0.2.0.tgz |
Old sources: | arf archive |
Please use the canonical form https://CRAN.R-project.org/package=arf to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.