The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Better Understanding Test Controls

library(amp)

The test control arguments:

Argument Description
n_peld_mc_samples Number of samples to be used in approximating the estimated limiting distribution of the parameter estimate under the null. Increasing this value reduces the approximation error of the test statistic.
nrm_type The type of norm to be used for the test. Generally the l_p norm
perf_meas the preferred measure used to generate the test statistic.
pos_lp_norms The index of the norms to be considered. For example if we use the l_p norm, norms_indx specifies the different p’s to try.
ld_est_meth String indicating method for estimating the limiting distribution of the test statistic parametric bootstrap or permutation.
ts_ld_bs_samp The number of test statistic limiting distribution bootstrap samples to be drawn.
other_output A vector indicating additional data that should be returned. Currently only "var_est" is supported.
Other arguments needed in other places.

Throughout, we will use a simple data generating mechanism:

x_data <- matrix(rnorm(500), ncol = 5)
y_data <- rnorm(100) + 0.02 * x_data[, 2]
obs_data <- data.frame(y_data, x_data)

Test statistic controls

There are multiple options when defining a test statistic outside of the specification of the parameter estimator, \(\hat{\Psi}\) and corresponding IC estimator, \(\hat{IC}\) (which is specified in the param_est argument. There are four arguments arguments that control these options.

perf_meas

The first argument perf_meas specifies the performance measure used to define the test statistic. Loosely defined, a performance measure is a function that provides information about the performance of a simple test at a specified alternative. It takes as arguments a norm \(\varphi\), an alternative \(x\) and a limiting distribution \(P_0\) and considers the performance of a test defined by \[ \text{reject if } \varphi\left(\hat{\psi}\right) > c_{\alpha} \] if the parameter value \(\psi\) was equal to \(x\). The perf_meas specifies which measure of performance to use. Currently the package has implemented three such measures:

Recommendation: Based on what we know currently, we recommend that users use the multiplicative distance performance measure. The other measures can have limiting distributions that are highly concentrated near 0 which can cause issues when approximating the p-value of the test.

We will discuss specification of the norm in the next section. For more details on the procedure, including why performance measures are good for defining a test statistic, see A general adaptive framework for multivariate point null testing.

Norm specification

Two arguments are used to specify the norm used in defining the test statistic. The first is nrm_type which can either be "ssq" or "lp". These norms are defined as:

The choice of \(p\) is specified by the pos_lp_norms argument. If pos_lp_norm is assigned a single value, a non-adaptive version of the test will be performed. If instead pos_lp_norm is assigned multiple arguments an adaptive test will be carried out. More information can be found in our paper. For the \(\ell_p\) norm, it is possible to set \(p = \infty\). To make this specification in R, include "max" in the vector of values assigned to pos_lp_norm.

ld_est_meth

The next argument we review specifies the method by which you wish to estimate the limiting distribution of the test statistic (\(\Gamma(\hat{\psi}, \hat{P}_0)\)). There are two options for this argument:

Approximation controls

The next two controls specify the accuracy of the approximation of the testing procedure.

n_peld_mc_samples

To understand this control argument it is important to distinguish between our parameter estimator \(\hat{\psi}\) and our test statistic, which is a function of \(\hat{\psi}\) and the estimated limiting distribution of \(\hat{\psi}\) under the null hypothesis (that \(\psi = 0\)), denoted by \(\hat{P}_0\). Letting \(\Gamma\) denote our performance measure, conditional on our observations, the true value of the test statistic is fixed and equal to \(\Gamma(\hat{\psi}, \hat{P}_0)\).

The n_peld_mc_samples argument determines how accurate the approximation of test statistic \(\Gamma(\hat{\psi}, \hat{P}_0)\) will be. The performance measure is frequently a function of \(\hat{P}_0\) through some probability statement (see the perf_meas for examples). To approximate these probabilities, a MC approximation is used and n_peld_mc_samples determines how many MC draws are taken.

Considering this argument in practice, note that the testing procedure only approximates the test statistic:

tc <- amp::test.control(n_peld_mc_samples = 50, pos_lp_norms = "2")
set.seed(10)
test_1 <- amp::mv_pn_test(obs_data = obs_data, param_est = amp::ic.pearson, 
                control = tc)
set.seed(20)
test_2 <- amp::mv_pn_test(obs_data = obs_data, param_est = amp::ic.pearson, 
                control = tc)
print(c(test_1$test_stat, test_2$test_stat))
#> [1] 0.92 0.94

In order to better approximate the test statistic, one may increase the value of this control argument:

mc_draws <- c(10, 50)
all_res <- list()
for (mc_draws in c(10, 50)) {
  set.seed(121)
  tc <- amp::test.control(n_peld_mc_samples = mc_draws, pos_lp_norms = 2, 
                          perf_meas = "est_acc")
  test_stat <- replicate(50, amp::mv_pn_test(obs_data = obs_data,
                            param_est = amp::ic.pearson,
                            control = tc)$test_stat)
  all_res[[as.character(mc_draws)]] <- 
    data.frame("mc_draws" = mc_draws, test_stat)
}
oldpar <- par(mfrow = c(1,2))
yl <- 25 
hist(all_res[[1]]$test_stat, main = "MC draws = 10",
     xlab = "Test Statistic", xlim = c(0, 1), ylim = c(0, yl), 
     breaks = seq(0, 1, 0.1)) 
hist(all_res[[2]]$test_stat, main = "MC draws = 50",
     xlab = "Test Statistic", xlim = c(0, 1),  ylim = c(0, yl), 
     breaks = seq(0, 1, 0.1))

par(oldpar)

ts_ld_bs_samp

The other parameter that determines the approximation accuracy of the testing procedure is ts_ld_bs_samp. This argument determines the number of draws taken from the estimated limiting distribution of \(\Gamma(\hat{\psi}, \hat{P}_0)\). This is different that n_peld_mc_samples that determines the accuracy of these draws and the test statistic.

Controlling the output of mv_pn_test

The last argument determines the output of the mv_pn_test function. The standard output of the test function is a list containing the following:

other_output

other_output is a character vector. Currently other_output only provides the option of returning two additional output elements.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.