The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

amanpg

Description

Uses an alternating manifold proximal gradient (AManPG) method to find sparse principal components from the given data or covariance matrix.

Only base R is required to be installed.

Usage

spca.amanpg(z, lambda1, lambda2, f_palm = 1e5, x0 = NULL, y0 = NULL, k = 0, type = 0, gamma = 0.5,
                        maxiter = 1e4, tol = 1e-5, normalize = TRUE, verbose = FALSE)

Arguments

Name Type Description
z matrix Either the data matrix or sample covariance matrix
lambda1 matrix List of parameters of length n for L1-norm penalty
lambda2 double L2-norm penalty term
f_palm double Upper bound for the gradient value to reach convergence, default value is 1e5
x0 matrix Initial x-values for the gradient method, default value is the first n right singular vectors
y0 matrix Initial y-values for the gradient method, default value is the first n right singular vectors
k integer Number of principal components desired, default is 0 (returns min(n-1, p) principal components)
type integer If 0, b is expected to be a data matrix, and otherwise b is expected to be a covariance matrix; default is 0
gamma double Parameter to control how quickly the step size changes in each iteration, default is 0.5
maxiter integer Maximum number of iterations allowed in the gradient method, default is 1e4
tol double Tolerance value required to indicate convergence (calculated as difference between iteration f-values), default is 1e-5
normalize logical Center and normalize rows to Euclidean length 1 if True, default is True
verbose logical Function prints progress between iterations if True, default is False

Value

Returns a dictionary with the following key-value pairs:

Key Value Type Value
iter integer Total number of iterations executed
f_manpg double Final gradient value
sparsity float Number of sparse loadings (loadings == 0) divided by number of all loadings
time double Number of seconds for execution
x matrix Corresponding ndarray in subproblem to the loadings
loadings matrix Loadings of the sparse principal components

Authors

Shixiang Chen, Justin Huang, Benjamin Jochem, Shiqian Ma, Lingzhou Xue and Hui Zou

References

Chen, S., Ma, S., Xue, L., and Zou, H. (2020) “An Alternating Manifold Proximal Gradient Method for Sparse Principal Component Analysis and Sparse Canonical Correlation Analysis” INFORMS Journal on Optimization 2:3, 192-208

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286.

Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, 106(8), 1311-1320.

Example

See SPCA.R for a more in-depth example.

library('SPCA')

#see SPCA.R for a more in-depth example
      d <- 500  # dimension
      m <- 1000 # sample size
      set.seed(10)
      a <- normalize(matrix(rnorm(m * d), m, d))
      lambda1 <- 0.1 * matrix(data=1, nrow=4, ncol=1)
      x0 <- svd(a, nv=4)$v
      sprout <- spca.amanpg(a, lambda1, lambda2=Inf, f_palm=1e5, x0=x0, y0=x0, k=4, type=0, gamma=0.5,
                            maxiter=1e4, tol=1e-5, normalize = FALSE, verbose=FALSE)
      print(paste(sprout$iter, "iterations,", sprout$sparsity, "sparsity,", sprout$time))

      #extract loadings
      #print(sprout$loadings)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.