The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

amanida: a R package for meta-analysis with non-integral data

GPLv3 License

Description

Amanida package contains a collection of functions for computing a meta-analysis in R only using significance and effect size. It covers the lack of data provided on metabolomic studies, where is rare to have error or variance disclosed. With this adaptation, only using p-value and fold-change, global significance and effect size for compounds or metabolites are obtained.

Furthermore, Amanida also computes qualitative meta-analysis performing a vote-counting for compounds, including the option of only using identifier and trend labels.

Documentation

The following computations are included:

The following plots are included to visualize the results:

Installation

Beta/Github release:

Installation using R package devtools:

install.packages("devtools")
devtools::install_github("mariallr/amanida")

CRAN:

install.packages("amanida")

Usage

You can use Amanida package in RStudio or R. After installation (explained before) follow this steps:

1. Load package in your script:

library(amanida)

2. Read your data: amanida_read

Supported files are csv, xls/xlsx and txt.

For quantitative meta-analysis include the following parameters:

coln = c("Compound Name", "P-value", "Fold-change", "N total", "References")
input_file <- system.file("extdata", "dataset2.csv", package = "amanida")
datafile <- amanida_read(input_file, mode = "quan", coln, separator=";")

For qualitative meta-analysis include the following parameters:

coln = c("Compound Name", "Behaviour", "References")
input_file <- system.file("extdata", "dataset2.csv", package = "amanida")
datafile <- amanida_read(input_file, mode = "qual", coln, separator=";")

Before the meta-analysis the IDs can be checked using public databases information. The IDs in format chemical name, InChI, InChIKey, and SMILES are searched in PubChem to transform all into a common nomenclature using webchem package. Harmonization names process is based in Villalba H, Llambrich M, Gumà J, Brezmes J, Cumeras R. A Metabolites Merging Strategy (MMS): Harmonization to Enable Studies’ Intercomparison. Metabolites. 2023; 13(12):1167. https://doi.org/10.3390/metabo13121167

datafile <- check_names(datafile)

3. Perform adapted meta-analysis: compute_amanida

amanida_result <- compute_amanida(datafile, comp.inf = F)

In this step you will obtain an S4 object with two tables:

Selecting the option comp.inf = T the package need the previous use of check_names. Then using PubChem ID duplicates are checked. Results are returned including the following information: PubChem ID, Molecular Formula, Molecular Weight, SMILES, InChIKey, KEGG, ChEBI, HMDB, Drugbank.

4. Perform qualitative meta-analysis: amanida_vote

coln = c("Compound Name", "Behaviour", "References")
input_file <- system.file("extdata", "dataset2.csv", package = "amanida")
data_votes <- amanida_read(input_file, mode = "qual", coln, separator = ";")

vote_result <- amanida_vote(data_votes)

For qualitative analysis the check_names can be also used, following the same procedure explained in Section 2.

In this step you will obtain an S4 object with one table:

Plots

Graphical visualization for adapted meta-analysis results: volcano_plot

volcano_plot(amanida_result, cutoff = c(0.05,4))

Graphical visualization of compounds vote-counting: vote_plot

Data can be subset for better visualization using counts parameter to indicate the vote-counting cut-off.

vote_plot(amanida_result)

Graphical visualization of compounds vote-counting and reports divided trend: explore_plot

Data can be shown in three types: * type = “all”: show all data * type = “sub”: subset the data by a cut-off value indicated by the counts parameter * type = “mix”: subset the data by a cut-off value indicated by the counts parameter and show compounds with discrepancies (reports up-regulated and down-regulated)

explore_plot(sample_data, type = "mix", counts = 1)

Report

All results using Amanida can be obtained in a single step using amanida_report function. It only requires the following parameters for qualitative analysis report: * file: path to the dataset * separator: separator used in the dataset * analysis_type: specify “quan” * column_id: nomes of columns to be used, see amanida_read documentation for more information * pvalue_cutoff: numeric value where the p-value will be considered as significant, usually 0.05 * fc_cutoff: numeric value where the fold-change will be considered as significant, usually 2 * votecount_lim: numeric value set as minimum to show vote-counting results * comp_inf: to include name checking and IDs retrieval.

And for quantitative analysis report: * file: path to the dataset * separator: separator used in the dataset * analysis_type: specify “qual” * column_id: nomes of columns to be used, see amanida_read documentation for more information * votecount_lim: numeric value set as minimum to show vote-counting results * comp_inf: to include name checking and IDs retrieval.

column_id = c("Compound Name", "P-value", "Fold-change", "N total", "References")
input_file <- system.file("extdata", "dataset2.csv", package = "amanida")
amanida_report(input_file, 
                separator = ";", 
                column_id, 
                analysis_type = "quan", 
                pvalue_cutoff = 0.05, 
                fc_cutoff = 4, 
                votecount_lim = 2, 
                comp_inf = F)
  

Examples

There is an example dataset installed, to run examples please load:

data("sample_data")

The dataset consist in a short list of compounds extracted from Comprehensive Volatilome and Metabolome Signatures of Colorectal Cancer in Urine: A Systematic Review and Meta-Analysis Mallafré et al. Cancers 2021, 13(11), 2534; https://doi.org/10.3390/cancers13112534

Please fill an issue if you have any question or problem :)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.