The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
ahnr
is a package that implements the artificial hydrocarbon networks developed by Hiram Ponce. Most of the work is based on the book Artificial Organic Networks.
Here are some quick examples to get you started.
The following code let’s you create the data to train an artificial hydrocarbon network.
library(ahnr)
# Create data
set.seed(123)
x <- 2 * runif(1000) - 1;
x <- sort(x)
y <- (x < 0.1) * (0.05 * runif(1000) + atan(pi*x)) +
(x >= 0.1 & x < 0.6) * (0.05 * runif(1000) + sin(pi*x)) +
(x >= 0.6) * (0.05 * runif(1000) + cos(pi*x))
plot(x, y, type = 'l')
# Create the Sigma dataset
Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y))
# Create network
ahn <- fit(Sigma, 4, 0.01, 2000)
The trained network can be used to visualize its performance.
# Create test data
X <- data.frame(x = x)
# Simulate
ysim <- predict(ahn, X)
plot(x, y, type = 'l')
lines(x, ysim, type = 'l', lty = 2, col = 'red')
legend(-1, 1, c('Original', 'Simulation'), col = c(1,2), lty = c(1,2), cex = 0.8)
A summary of the network can be obtained with the summary
command.
summary(ahn)
##
## Artificial Hydrocarbon Network trained:
##
## Number of molecules:
## 4
##
## Learning factor:
## 0.01
##
## Overall error:
## 0.0615
##
## Centers of the molecules:
## x
## molecule1 -0.3900741
## molecule2 0.6661437
## molecule3 0.2555718
## molecule4 0.5338930
##
## Molecules:
## Molecule 1:
## x
## C1 0.035
## H11 3.527
## H12 3.709
## H13 1.466
##
## Molecule 2:
## x
## C2 3.089
## H21 -7.914
## H22 3.842
##
## Molecule 3:
## x
## C3 0.031
## H31 3.295
## H32 -2.165
##
## Molecule 4:
## x
## C4 -0.641
## H41 7.889
## H42 -11.506
## H43 4.771
Finally, the network itself can be visualized with the visualize
command. The text of the carbon of the first molecule is in red.
visualize(ahn)
# Create data
set.seed(12321)
t <- seq(0, 15, 0.01)
X <- data.frame(x1 = cos(t), x2 = t)
Y <- data.frame(y = sin(t))
# Create the Sigma dataset
Sigma <- list(X = X, Y = Y)
# Create network
ahn <- fit(Sigma, 5, 0.01, 2000)
# Simulate
ysim <- predict(ahn, X)
plot(t, Y$y, type = 'l', col = 'black', xlab = 't', ylab = 'y')
lines(t, ysim, type = 'l', lty = 2, col = 'red')
legend(0, -0.5, c('Original', 'Simulation'), col = c(1,2), lty = c(1,2), cex = 0.6)
summary(ahn)
##
## Artificial Hydrocarbon Network trained:
##
## Number of molecules:
## 5
##
## Learning factor:
## 0.01
##
## Overall error:
## 0.0681
##
## Centers of the molecules:
## x1 x2
## molecule1 0.6711820 6.3923153
## molecule2 1.1138319 1.1193610
## molecule3 0.3259886 6.4597589
## molecule4 -0.2025691 4.1373693
## molecule5 -0.1651733 13.7288473
##
## Molecules:
## Molecule 1:
## x1 x2
## C1 -1.768 -1.768
## H11 -2.238 -5.561
## H12 -0.332 2.051
## H13 0.310 -0.162
##
## Molecule 2:
## x1 x2
## C2 0.051 0.051
## H21 0.102 1.047
## H22 -0.207 -0.302
##
## Molecule 3:
## x1 x2
## C3 -3.023 -3.023
## H31 -0.454 2.222
## H32 -0.362 -0.169
##
## Molecule 4:
## x1 x2
## C4 0.780 0.780
## H41 1.681 0.539
## H42 0.699 -0.230
##
## Molecule 5:
## x1 x2
## C5 -2.828 -2.828
## H51 -4.667 -18.164
## H52 1.908 2.992
## H53 -0.864 -0.118
visualize(ahn)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.