The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction to affiner

Table of Contents

Overview

{affiner} is an extraction and improvement of the low-level geometric and R 4.2 affine transformation feature functionality used in {piecepackr} to render board game pieces in {grid} using a 3D oblique projection.

Polyhedral dice

The current goals are to:

  1. Make it easier for {piecepackr} users to use this low-level geometric functionality without exporting it in {piecepackr} (which already has a large API) in case they want to do things like implement custom polyhedral dice.
  2. Make it easier for other R developers to support fancier 3D renderings in their packages using {grid} (and perhaps {ggplot2}).
  3. Refactor and improve this code base.

Some particular intended strengths compared to other R geometry packages:

  1. Focus on reducing pain points in rendering “illustrated” (game) pieces in a 3D parallel projections in {grid} (e.g. oblique projections and isometric projections).
  2. Helpers for using the R 4.2 affine transformation feature to render “illustrated” 3D faces in {grid}. The affine_settings() function which reverse engineers useGrob()’s vp and transformation arguments is even available as a “standalone” file that can be copied over into other R packages under the permissive Unlicense.
  3. Functions to convert between axis-angle representation and rotation matrix.
  4. Allows users to use whichever angular unit is most convenient for them including degrees, radians, turns, half-turns aka (multiples-of-)pi-radians, and gradians.
  5. Light dependencies: only non-base R package dependency is {R6} which is a pure R package with no other dependencies.

Examples

Render an “illustrated” d6 dice using oblique and isometric projections

Our high-level strategy for rendering 3D objects is as follows:

library("affiner")
library("grid")
xyz_face <- as_coord3d(x = c(0, 0, 1, 1) - 0.5, y = c(1, 0, 0, 1) - 0.5, z = 0.5)
l_faces <- list() # order faces for our target projections
l_faces$bottom <- xyz_face$clone()$
                    rotate("z-axis", angle(180, "degrees"))$
                    rotate("y-axis", angle(180, "degrees"))
l_faces$north <- xyz_face$clone()$
                    rotate("z-axis", angle(90, "degrees"))$
                    rotate("x-axis", angle(-90, "degrees"))
l_faces$east <- xyz_face$clone()$
                    rotate("z-axis", angle(90, "degrees"))$
                    rotate("y-axis", angle(90, "degrees"))
l_faces$west <- xyz_face$clone()$
                    rotate("y-axis", angle(-90, "degrees"))
l_faces$south <- xyz_face$clone()$
                    rotate("z-axis", angle(180, "degrees"))$
                    rotate("x-axis", angle(90, "degrees"))
l_faces$top <- xyz_face$clone()$
                    rotate("z-axis", angle(-90, "degrees"))

colors <- c("#D55E00", "#009E73", "#56B4E9", "#E69F00", "#CC79A7", "#0072B2")
spacings <- c(0.25, 0.2, 0.25, 0.25, 0.25, 0.25)
die_face_grob <- function(digit) {
    if (requireNamespace("gridpattern", quietly = TRUE)) {
        bg <- gridpattern::grid.pattern_polygon_tiling(
                   colour = "grey80",
                   fill = c(colors[digit], "white"),
                   type = gridpattern::names_polygon_tiling[digit],
                   spacing = spacings[digit],
                   draw = FALSE)
    } else {
        bg <- rectGrob(gp = gpar(col = NA, fill = colors[digit]))
    }
    digit <- textGrob(digit, gp = gpar(fontsize = 72))
    grobTree(bg, digit)
}
l_face_grobs <- lapply(1:6, function(i) die_face_grob(i))
grid.newpage()
for (i in 1:6) {
    vp <- viewport(x = unit((i - 1) %% 3 + 1, "inches"),
                   y = unit(3 - ((i - 1) %/% 3 + 1), "inches"),
                   width = unit(1, "inches"), height = unit(1, "inches"))
    pushViewport(vp)
    grid.draw(l_face_grobs[[i]])
    popViewport()
    grid.text("The six die faces", y = 0.9, 
              gp = gpar(fontsize = 18, face = "bold"))
}

The six die faces

# re-order face grobs for our target projections
# bottom = 6, north = 4, east = 5, west = 2, south = 3, top = 1
l_face_grobs <- l_face_grobs[c(6, 4, 5, 2, 3, 1)]
draw_die <- function(l_xy, l_face_grobs) {
    min_x <- min(vapply(l_xy, function(x) min(x$x), numeric(1)))
    min_y <- min(vapply(l_xy, function(x) min(x$y), numeric(1)))
    l_xy <- lapply(l_xy, function(xy) {
        xy$translate(x = -min_x + 0.5, y = -min_y + 0.5)
    })
    grid.newpage()
    vp_define <- viewport(width = unit(1, "inches"), height = unit(1, "inches"))
    gp_border <- gpar(col = "black", lwd = 4, fill = NA)
    for (i in 1:6) {
        xy <- l_xy[[i]]
        settings <- affine_settings(xy, unit = "inches")
        grid.affine(l_face_grobs[[i]],
                    vp_define = vp_define,
                    transform = settings$transform,
                    vp_use = settings$vp)
        grid.polygon(xy$x, xy$y, default.units = "inches", gp = gp_border)
    }
}
# oblique projection of dice onto xy-plane
l_xy_oblique1 <- lapply(l_faces, function(xyz) {
    xyz$clone() |>
        as_coord2d(scale = 0.5)
})
draw_die(l_xy_oblique1, l_face_grobs)
grid.text("Oblique projection\n(onto xy-plane)", y = 0.9,
          gp = gpar(fontsize = 18, face = "bold"))

Parallel projection of a die

# oblique projection of dice on xz-plane
l_xy_oblique2 <- lapply(l_faces, function(xyz) {
    xyz$clone()$
        permute("xzy") |>
        as_coord2d(scale = 0.5, alpha = angle(135, "degrees"))
})
draw_die(l_xy_oblique2, l_face_grobs)
grid.text("Oblique projection\n(onto xz-plane)", y = 0.9,
          gp = gpar(fontsize = 18, face = "bold"))

Parallel projection of a die

# isometric projection
l_xy_isometric <- lapply(l_faces, function(xyz) {
    xyz$clone()$
        rotate("z-axis", angle(45, "degrees"))$
        rotate("x-axis", angle(-(90 - 35.264), "degrees")) |>
        as_coord2d()
})

draw_die(l_xy_isometric, l_face_grobs)
grid.text("Isometric projection", y = 0.9,
          gp = gpar(fontsize = 18, face = "bold"))

Parallel projection of a die

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.