The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Install aelab
package from Github. devtools
need to be install though install.packges("devtools")
.
Load other required packages. Install through
install.packages("package_name")
if not already
installed.
Unnecessary rows and columns are removed. NaN values of GHG data are removed.
ghg_data_path <- system.file("extdata", "ch4.xlsx", package = "aelab", mustWork = T)
ch4 <- tidy_licor(ghg_data_path, "ch4")
ch4[c(1:5), ]
## DATE TIME CO2 CH4 date_time
## 1 2023/03/11 07:31:59 799.9406 2999.952 2023-03-11 07:31:59
## 2 2023/03/11 07:32:00 770.1415 2995.596 2023-03-11 07:32:00
## 3 2023/03/11 07:32:01 771.6826 2993.581 2023-03-11 07:32:01
## 4 2023/03/11 07:32:02 1304.2191 2940.007 2023-03-11 07:32:02
## 5 2023/03/11 07:32:03 1974.0665 2885.650 2023-03-11 07:32:03
Convert the time in LI-COR to match the time in real life (if there are any differences).
## DATE TIME CO2 CH4 date_time
## 1 2023/03/11 07:31:59 799.9406 2999.952 2023-03-11 07:31:59
## 2 2023/03/11 07:32:00 770.1415 2995.596 2023-03-11 07:32:00
## 3 2023/03/11 07:32:01 771.6826 2993.581 2023-03-11 07:32:01
## 4 2023/03/11 07:32:02 1304.2191 2940.007 2023-03-11 07:32:02
## 5 2023/03/11 07:32:03 1974.0665 2885.650 2023-03-11 07:32:03
## real_datetime
## 1 2023-03-11 07:17:29
## 2 2023-03-11 07:17:30
## 3 2023-03-11 07:17:31
## 4 2023-03-11 07:17:32
## 5 2023-03-11 07:17:33
Type the date and time of GHG flux measurement (start time) in excel, then load the file into R.
ref_data_path <- system.file("extdata", "reference.xlsx", package = "aelab", mustWork = T)
ref <- read_excel(ref_data_path)
ref
## # A tibble: 3 × 3
## real_date real_time date_time
## <dttm> <dttm> <dttm>
## 1 2023-03-11 00:00:00 1899-12-31 07:32:00 2023-03-11 07:32:00
## 2 2023-03-11 00:00:00 1899-12-31 08:32:00 2023-03-11 08:32:00
## 3 2023-03-11 00:00:00 1899-12-31 09:32:00 2023-03-11 09:32:00
Calculation of the slope of methane concentration over time using the
date_time
value in the ref
data. In the
results, start_time
and end_time
are the time
range of the data used to perform regression. slope
is the
slope and R-square
is the R^2 of the regression.
reference_time
is the start time of the measurement from
the input.
## # A tibble: 3 × 5
## start_time end_time slope r_square reference_time
## <chr> <chr> <dbl> <dbl> <dttm>
## 1 2023/03/11 07:33:42 2023/03/11 07:38:41 -0.0406 0.671 2023-03-11 07:32:00
## 2 2023/03/11 08:32:00 2023/03/11 08:36:59 -0.207 0.671 2023-03-11 08:32:00
## 3 2023/03/11 09:34:01 2023/03/11 09:39:00 0.104 0.444 2023-03-11 09:32:00
The default duration of measurement is set to 7
minutes,
and the number of rows selected to perform regression is
300
. You can modify these values if desired using the input
variables duration_minutes
and num_rows
according to your needs.
calculate_regression(ch4, ghg = "CH4", reference_time = ref$date_time,
duration_minutes = 5, num_rows = 300)
## # A tibble: 3 × 5
## start_time end_time slope r_square reference_time
## <chr> <chr> <dbl> <dbl> <dttm>
## 1 2023/03/11 07:32:00 2023/03/11 07:36:59 -0.0412 0.326 2023-03-11 07:32:00
## 2 2023/03/11 08:32:00 2023/03/11 08:36:59 -0.207 0.671 2023-03-11 08:32:00
## 3 2023/03/11 09:32:00 2023/03/11 09:36:59 -0.00523 0.00546 2023-03-11 09:32:00
The start time of measurement can also be input directly into the
function. Note that as.POSIXct()
is necessary.
calculate_regression(ch4, ghg = "CH4", reference_time = as.POSIXct("2023-03-11 07:32:00", tz = "UTC"))
## # A tibble: 1 × 5
## start_time end_time slope r_square reference_time
## <chr> <chr> <dbl> <dbl> <dttm>
## 1 2023/03/11 07:33:42 2023/03/11 07:38:41 -0.0406 0.671 2023-03-11 07:32:00
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.