The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.
In addition to this, we also provide a simple way (Jones and Hulme, 1996) to grid the irregularly-spaced data points onto regular latitude-longitude grids by averaging all stations in grid-boxes.
Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.
Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F.
Install the latest CRAN release via command:
install.packages("adw")
library(sf)
library(ggplot2)
library(adw)
library(cnmap)
set.seed(1)
tavg <- data.frame(lon = runif(100, min = 110, max = 117),
lat = runif(100, min = 31, max = 37),
value = runif(100, min = 20, max = 35))
hmap <- getMap(name = "河南省", returnClass = "sf")
ggplot() +
geom_point(data = tavg, aes(x = lon, y = lat, colour = value),
pch = 17, size = 2.5) +
geom_sf(data = st_cast(hmap, 'MULTILINESTRING')) +
scale_colour_fermenter(palette = "YlOrRd",
direction = 1,
breaks = seq(from = 25, to = 32, by = 1),
limits = c(0, 100),
name = expression("\u00B0C")) +
ggtitle("The irregularly-spaced data") +
theme_bw() +
theme(axis.title = element_blank(),
legend.key.width = unit(0.5,"cm"),
legend.key.height = unit(1.5, "cm"),
plot.title = element_text(hjust = 0.5, size = 11))
The parameter extent in the adw function is a sf class (sf package), and the coordinate reference system of the object is WGS1984 (EPSG: 4326).
library(adw)
hmap_sf <- getMap(name = "河南省", returnClass = "sf") |> st_make_valid()
dg <- adw(tavg, extent = hmap_sf, gridsize = 0.1, cdd = 400)
head(dg)
#> lon lat value
#> 50 115.3105 31.43345 28.89078
#> 107 114.7105 31.53345 28.40398
#> 108 114.8105 31.53345 28.45766
#> 109 114.9105 31.53345 28.64374
#> 110 115.0105 31.53345 28.71852
#> 113 115.3105 31.53345 28.92356
ggplot() +
geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) +
geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) +
scale_fill_fermenter(palette = "YlOrRd",
direction = 1,
breaks = seq(from = 25, to = 32, by = 1),
limits = c(0, 100),
name = expression("\u00B0C"),
na.value = "white") +
ggtitle("Angular distance weighting interpolation") +
theme_bw() +
theme(axis.title = element_blank(),
legend.key.width = unit(0.5,"cm"),
legend.key.height = unit(1.5, "cm"),
plot.title = element_text(hjust = 0.5, size = 11))
The parameter extent in the adw function is a SpatVector class (terra packag), and the coordinate reference system of the object is WGS1984 (EPSG: 4326).
library(adw)
library(terra)
#> terra 1.7.71
hmap_sv <- getMap(name = "河南省", returnClass = "sv")
dg <- adw(tavg, extent = hmap_sv, gridsize = 0.1, cdd = 400)
head(dg)
#> lon lat value
#> 1 115.3105 31.43345 28.89078
#> 2 114.7105 31.53345 28.40398
#> 3 114.8105 31.53345 28.45766
#> 4 114.9105 31.53345 28.64374
#> 5 115.0105 31.53345 28.71852
#> 6 115.3105 31.53345 28.92356
ggplot() +
geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) +
geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) +
scale_fill_fermenter(palette = "YlOrRd",
direction = 1,
breaks = seq(from = 25, to = 32, by = 1),
limits = c(0, 100),
name = expression("\u00B0C"),
na.value = "white") +
ggtitle("Angular distance weighting interpolation") +
theme_bw() +
theme(axis.title = element_blank(),
legend.key.width = unit(0.5,"cm"),
legend.key.height = unit(1.5, "cm"),
plot.title = element_text(hjust = 0.5, size = 11))
The parameter extent in the adw function is a extent vector of length 4 in the order [xmin, xmax, ymin, ymax]
library(adw)
interpExtent <- c(110.36, 116.65, 31.38, 36.37) # [xmin, xmax, ymin, ymax]
dg <- adw(tavg, extent = interpExtent, gridsize = 0.1, cdd = 400)
head(dg)
#> lon lat value
#> 1 110.41 31.43 24.57478
#> 2 110.51 31.43 24.44855
#> 3 110.61 31.43 24.41044
#> 4 110.71 31.43 24.36908
#> 5 110.81 31.43 24.32720
#> 6 110.91 31.43 24.28706
ggplot() +
geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) +
geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) +
scale_fill_fermenter(palette = "YlOrRd",
direction = 1,
breaks = seq(from = 25, to = 32, by = 1),
limits = c(0, 100),
name = expression("\u00B0C"),
na.value = "white") +
ggtitle("Angular distance weighting interpolation") +
theme_bw() +
theme(axis.title = element_blank(),
legend.key.width = unit(0.5,"cm"),
legend.key.height = unit(1.5, "cm"),
plot.title = element_text(hjust = 0.5, size = 11))
The irregularly-spaced data of points are converted onto regular latitude-longitude grids by averaging all stations in grid-boxes. The parameter extent in the point2grid function is a extent vector of length 4 in the order [xmin, xmax, ymin, ymax], or a simple fearture object, or a SpatVect object.
library(adw)
interpExtent <- c(110.36, 116.65, 31.38, 36.37) # [xmin, xmax, ymin, ymax]
dg <- points2grid(tavg, extent = interpExtent, gridsize = 0.5)
head(dg)
#> lon lat value
#> 1 110.61 31.63 NaN
#> 2 111.11 31.63 NaN
#> 3 111.61 31.63 NaN
#> 4 112.11 31.63 NaN
#> 5 112.61 31.63 NaN
#> 6 113.11 31.63 21.2272
ggplot() +
geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) +
geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) +
scale_fill_fermenter(palette = "YlOrRd",
direction = 1,
breaks = seq(from = 25, to = 32, by = 1),
limits = c(0, 100),
name = expression("\u00B0C"),
na.value = "white") +
ggtitle("Averaging all stations in grid-boxes") +
theme_bw() +
theme(axis.title = element_blank(),
legend.key.width = unit(0.5,"cm"),
legend.key.height = unit(1.5, "cm"),
plot.title = element_text(hjust = 0.5, size = 11))
The large area, or hemispheric, or global averages can be calculated dependent on the area represented by the grid-point or grid-box. The weight of latitude-longitude grid-points-boxes should be the cosine of the latitude of the ith grid-point-box.
dg <- na.omit(dg)
awa(dg$value, dg$lat)
#> [1] 26.21314
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.