The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Higher Order Functions

Introduction

This vignette explains some of the more advanced options of {admiral} related to higher order functions. A higher order function is a function that takes another function as input. By introducing these higher order functions, we intend to give the user greater power over our derivation functions, whilst trying to negate the need for adding additional {admiral} functions or arguments, or the user needing many separate steps.

The functions covered here are:

Required Packages

The examples of this vignette require the following packages.

For example purpose, the ADSL dataset—which is included in {admiral}—and the SDTM datasets from {pharmaversesdtm} are used.

library(admiral)
library(pharmaversesdtm)
library(dplyr, warn.conflicts = FALSE)

ae <- pharmaversesdtm::ae
vs <- pharmaversesdtm::vs
adsl <- admiral::admiral_adsl

ae <- convert_blanks_to_na(ae)
vs <- convert_blanks_to_na(vs)

The following code creates a minimally viable ADAE dataset to be used where needed in the following examples.

adae <- ae %>%
  left_join(adsl, by = c("STUDYID", "USUBJID")) %>%
  derive_vars_dt(
    new_vars_prefix = "AST",
    dtc = AESTDTC,
    highest_imputation = "M"
  ) %>%
  mutate(TRTEMFL = if_else(ASTDT >= TRTSDT, "Y", NA_character_))

Call Derivation

This function exists purely for convenience to save the user repeating numerous similar derivation function calls. It is best used when multiple derived variables have very similar specifications with only slight variations.

As an example, imagine the case where all the parameters in a BDS ADaM required both a highest value flag and a lowest value flag.

Here is an example of how to achieve this without using call_derivation():

vs_without <- vs %>%
  derive_var_extreme_flag(
    by_vars = exprs(USUBJID, VSTESTCD),
    order = exprs(VSORRES, VSSEQ),
    new_var = AHIFL,
    mode = "last"
  ) %>%
  derive_var_extreme_flag(
    by_vars = exprs(USUBJID, VSTESTCD),
    order = exprs(VSORRES, VSSEQ),
    new_var = ALOFL,
    mode = "first"
  )
USUBJID VSTESTCD VSORRES ALOFL AHIFL
01-701-1015 TEMP 96.9 NA NA
01-701-1015 TEMP 97.0 NA NA
01-701-1015 TEMP 97.2 NA NA
01-701-1015 TEMP 96.6 Y NA
01-701-1015 TEMP 97.7 NA NA
01-701-1015 TEMP 97.0 NA NA
01-701-1015 TEMP 97.5 NA NA
01-701-1015 TEMP 97.4 NA NA
01-701-1015 TEMP 98.0 NA Y
01-701-1015 TEMP 97.4 NA NA

Here is an example of how to achieve the same with using call_derivation(), where any different arguments are passed using params():

vs_with <- vs %>%
  call_derivation(
    derivation = derive_var_extreme_flag,
    variable_params = list(
      params(new_var = AHIFL, mode = "last"),
      params(new_var = ALOFL, mode = "first")
    ),
    by_vars = exprs(USUBJID, VSTESTCD),
    order = exprs(VSORRES, VSSEQ)
  )
USUBJID VSTESTCD VSORRES ALOFL AHIFL
01-701-1015 TEMP 96.9 NA NA
01-701-1015 TEMP 97.0 NA NA
01-701-1015 TEMP 97.2 NA NA
01-701-1015 TEMP 96.6 Y NA
01-701-1015 TEMP 97.7 NA NA
01-701-1015 TEMP 97.0 NA NA
01-701-1015 TEMP 97.5 NA NA
01-701-1015 TEMP 97.4 NA NA
01-701-1015 TEMP 98.0 NA Y
01-701-1015 TEMP 97.4 NA NA

In the example, you can see how in these higher order functions, derivation is where the user supplies the name of the derivation function to apply, with no trailing parentheses required. Then variable_params is used to pass a list of the different arguments needed for each derived variable.

The advantage of this higher order function would be further highlighted with examples where more than two variable derivations had similar needs, such as the below case where multiple time to AE parameters are derived in one call. Note that this example relies on pre-defined tte_source objects, as explained at Creating a BDS Time-to-Event ADaM.

adaette <- call_derivation(
  derivation = derive_param_tte,
  variable_params = list(
    params(
      event_conditions = list(ae_event),
      set_values_to = exprs(PARAMCD = "TTAE")
    ),
    params(
      event_conditions = list(ae_ser_event),
      set_values_to = exprs(PARAMCD = "TTSERAE")
    ),
    params(
      event_conditions = list(ae_sev_event),
      set_values_to = exprs(PARAMCD = "TTSEVAE")
    ),
    params(
      event_conditions = list(ae_wd_event),
      set_values_to = exprs(PARAMCD = "TTWDAE")
    )
  ),
  dataset_adsl = adsl,
  source_datasets = list(adsl = adsl, adae = adae),
  censor_conditions = list(lastalive_censor)
)
#> Warning: Dataset "adae" contains duplicate records with respect to `STUDYID`, `USUBJID`,
#> and `ASTDT`
#> ℹ Run `admiral::get_duplicates_dataset()` to access the duplicate records
USUBJID PARAMCD STARTDT ADT CNSR EVNTDESC SRCDOM SRCVAR
01-701-1111 TTAE 2012-09-07 2012-09-07 0 ADVERSE EVENT ADAE ASTDT
01-701-1111 TTSERAE 2012-09-07 2012-09-17 1 ALIVE ADSL LSTALVDT
01-701-1111 TTSEVAE 2012-09-07 2012-09-17 1 ALIVE ADSL LSTALVDT
01-701-1111 TTWDAE 2012-09-07 2012-09-17 1 ALIVE ADSL LSTALVDT
01-705-1393 TTAE 2012-09-07 2012-09-19 0 ADVERSE EVENT ADAE ASTDT
01-705-1393 TTSERAE 2012-09-07 2013-02-20 1 ALIVE ADSL LSTALVDT
01-705-1393 TTSEVAE 2012-09-07 2013-01-21 0 SEVERE ADVERSE EVENT ADAE ASTDT
01-705-1393 TTWDAE 2012-09-07 2013-02-20 1 ALIVE ADSL LSTALVDT

Developing your ADaM scripts this way using call_derivation() could give the following benefits:

Restrict Derivation

The idea behind this function is that sometimes you want to apply a derivation only for certain records from the input dataset. Introducing restrict_derivation() therefore gives the users the ability to achieve this across any function, without each function needing to have such an argument to allow for this.

An example would be if you wanted to flag the first occurring AE with the highest severity for each patient, but you only wanted to do this for records occurring on or after study day 1.

Here is how you could achieve this using restrict_derivation(), where the function arguments are passed using params() and the restriction criteria is given using filter:

ae <- ae %>%
  mutate(TEMP_AESEVN = as.integer(factor(AESEV, levels = c("SEVERE", "MODERATE", "MILD")))) %>%
  restrict_derivation(
    derivation = derive_var_extreme_flag,
    args = params(
      new_var = AHSEVFL,
      by_vars = exprs(USUBJID),
      order = exprs(TEMP_AESEVN, AESTDY, AESEQ),
      mode = "first"
    ),
    filter = AESTDY >= 1
  )
USUBJID AEDECOD AESTDY AESEQ AESEV AHSEVFL
01-701-1111 LOCALISED INFECTION -61 3 MODERATE NA
01-701-1111 ERYTHEMA -5 1 MILD NA
01-701-1111 PRURITUS -5 2 MILD NA
01-701-1111 ERYTHEMA -5 4 MILD NA
01-701-1111 PRURITUS -5 5 MILD NA
01-701-1111 MICTURITION URGENCY 1 6 MILD NA
01-701-1111 ARTHRALGIA 7 7 MODERATE Y
01-701-1111 CELLULITIS 7 8 MODERATE NA
01-705-1393 PRURITUS -277 2 MILD NA
01-705-1393 PRURITUS -277 4 MILD NA

Slice Derivation

This function in a way combines the features of the above two. It allows a single derivation to be applied with different arguments for different slices (subsets) of records from the input dataset. You could do this with separate restrict_derivation() calls for each different set of records, but slice_derivation() allows to achieve this in one call.

An example would be if you wanted to achieve the same derivation as above for records occurring on or after study day 1, but for pre-treatment AEs you wanted to flag only the last occurring AE.

Here is how you could achieve this using slice_derivation(), where the function arguments are passed using params() and via the different slices controlled by filter:

ae <- ae %>%
  slice_derivation(
    derivation = derive_var_extreme_flag,
    args = params(
      new_var = AHSEV2FL,
      by_vars = exprs(USUBJID)
    ),
    derivation_slice(
      filter = AESTDY >= 1,
      args = params(order = exprs(TEMP_AESEVN, AESTDY, AESEQ), mode = "first")
    ),
    derivation_slice(
      filter = TRUE,
      args = params(order = exprs(AESTDY, AESEQ), mode = "last")
    )
  )
USUBJID AEDECOD AESTDY AESEQ AESEV AHSEV2FL
01-701-1111 LOCALISED INFECTION -61 3 MODERATE NA
01-701-1111 ERYTHEMA -5 1 MILD NA
01-701-1111 PRURITUS -5 2 MILD NA
01-701-1111 ERYTHEMA -5 4 MILD NA
01-701-1111 PRURITUS -5 5 MILD Y
01-701-1111 MICTURITION URGENCY 1 6 MILD NA
01-701-1111 ARTHRALGIA 7 7 MODERATE Y
01-701-1111 CELLULITIS 7 8 MODERATE NA
01-705-1393 PRURITUS -277 2 MILD NA
01-705-1393 PRURITUS -277 4 MILD Y

As you can see in the example, the derivation_slice ordering is important. Here we addressed all the AEs on or after study day 1 first, and then we used filter = TRUE option to catch all remaining records (in this case pre-treatment AEs).

The ordering is perhaps shown even more when we look at the below example where three slices are taken. Remember that observations that match with more than one slice are only considered for the first matching slice. So in this case we’re creating a flag for each patient for the record with the first severe AE, and then the first moderate AE, and finally flagging the last occurring AE where not severe or moderate.

ae <- ae %>%
  slice_derivation(
    derivation = derive_var_extreme_flag,
    args = params(
      new_var = AHSEV3FL,
      by_vars = exprs(USUBJID)
    ),
    derivation_slice(
      filter = AESEV == "SEVERE",
      args = params(order = exprs(AESTDY, AESEQ), mode = "first")
    ),
    derivation_slice(
      filter = AESEV == "MODERATE",
      args = params(order = exprs(AESTDY, AESEQ), mode = "first")
    ),
    derivation_slice(
      filter = TRUE,
      args = params(order = exprs(AESTDY, AESEQ), mode = "last")
    )
  )
USUBJID AEDECOD AESTDY AESEQ AESEV AHSEV3FL
01-701-1111 LOCALISED INFECTION -61 3 MODERATE Y
01-701-1111 ERYTHEMA -5 1 MILD NA
01-701-1111 PRURITUS -5 2 MILD NA
01-701-1111 ERYTHEMA -5 4 MILD NA
01-701-1111 PRURITUS -5 5 MILD NA
01-701-1111 MICTURITION URGENCY 1 6 MILD Y
01-701-1111 ARTHRALGIA 7 7 MODERATE NA
01-701-1111 CELLULITIS 7 8 MODERATE NA
01-705-1393 PRURITUS -277 2 MILD NA
01-705-1393 PRURITUS -277 4 MILD NA

The order is only important when the slices are not mutually exclusive, so in the above case the moderate AE slice could have been above the severe AE slice, for example, and there would have been no difference to the result. However the third slice had to come last to check all remaining (i.e. not severe or moderate) records only.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.