Package ‘adapt3’

July 17, 2025
Type Package

Title Adaptive Dynamics and Community Matrix Model Projections
Version 1.0.1
Date 2025-07-11

Description Runs projections of groups of matrix projection models (MPMs),
allowing density dependence mechanisms to work across MPMs. This
package was developed to run both adaptive dynamics simulations
such as pairwise and multiple invasibility analyses, and community
projections in which species are represented by MPMs. All forms of
MPMs are allowed, including integral projection models (IPMs). Also
includes individual-based modeling (IBM) versions of these.

Encoding UTF-8
License GPL (>=2)

URL https://github.com/dormancy1/adapt3

Imports Rcpp (>=1.0.12), lefko3, methods, rlang, grDevices
LinkingTo Rcpp, ReppArmadillo, BH, lefko3

LazyData true

BugReports https://github.com/dormancyl/adapt3/issues
RoxygenNote 7.3.2

Suggests knitr, rmarkdown

VignetteBuilder knitr, rmarkdown

NeedsCompilation yes

Author Richard P. Shefferson [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5234-3131>)

Maintainer Richard P. Shefferson <cdorm@g.ecc.u-tokyo.ac. jp>
Depends R (>=3.5.0)

Repository CRAN

Date/Publication 2025-07-16 15:40:08 UTC

https://github.com/dormancy1/adapt3
https://github.com/dormancy1/adapt3/issues
https://orcid.org/0000-0002-5234-3131

2 adapt3-package
Contents
adapt3-package L. e 2
cypa_data e 3
eqUIV_INPUL e e 5
invade3 L. e 8
plotadaptlnv e e 15
plotadaptProj L e 18
PIOJECt3 o o o o e e e e e e e 20
summary.adaptlnv 27
summary.adaptProjo 29
ta_skeleton e 32
rait_axiS o e e 34
Index 40
adapt3-package Adaptive Dynamics and Community Matrix Model Projections
Description

Runs projections of groups of matrix projection models (MPMs), allowing density dependence
mechanisms to work across MPMs. This package was developed to run both adaptive dynamics
simulations such as pairwise and multiple invasion analysis, and community projections in which
species are represented by MPMs. All forms of MPMs are allowed, including integral projection
models (IPMs).

Details

The adapt3 package provides three categories of functions:

1. Core projection

2. Function characterizing relationships among MPMs

3. Functions describing, summarizing, or visualizing results

adapt3 also includes example datasets complete with sample code.

Author(s)

Maintainer: Richard P. Shefferson <cdorm@g.ecc.u-tokyo.ac.jp> (ORCID)

Richard P. Shefferson <cdorm@g.ecc.u-tokyo.ac.jp>

References

Pending

https://orcid.org/0000-0002-5234-3131

cypa_data 3

See Also
Useful links:

* https://github.com/dormancy1/adapt3
* Report bugs at https://github.com/dormancyl/adapt3/issues

cypa_data Demographic Dataset of Cypripedium parviflorum Population, in
Horizontal Format

Description

A dataset containing the states and fates of Cypripedium parviflorum (small yellow lady’s slipper
orchids), family Orchidaceae, from a population in Illinois, USA, resulting from monitoring that
occurred annually between 1994 and 2011.

Usage

data(cypa_data)

Format

A data frame with 1119 individuals and 37 variables. Each row corresponds to an unique individual,
and each variable from Inf.94 on refers to the state of the individual in a particular year.

plant_id A numeric variable giving a unique number to each individual.
Inf.94 Number of inflorescences in 1994.

Veg.94 Number of stems without inflorescences in 1994.
Inf.95 Number of inflorescences in 1995.

Veg.95 Number of stems without inflorescences in 1995.
Inf.96 Number of inflorescences in 1996.

Veg.96 Number of stems without inflorescences in 1996.
Inf.97 Number of inflorescences in 1997.

Veg.97 Number of stems without inflorescences in 1997.
Inf.98 Number of inflorescences in 1998.

Veg.98 Number of stems without inflorescences in 1998.
Inf.99 Number of inflorescences in 1999.

Veg.99 Number of stems without inflorescences in 1999.
Inf.00 Number of inflorescences in 2000.

Veg.00 Number of stems without inflorescences in 2000.
Inf.01 Number of inflorescences in 2001.

Veg.01 Number of stems without inflorescences in 2001.

https://github.com/dormancy1/adapt3
https://github.com/dormancy1/adapt3/issues

4 cypa_data

Inf.02 Number of inflorescences in 2002.
Veg.02 Number of stems without inflorescences in 2002.
Inf.03 Number of inflorescences in 2003.
Veg.03 Number of stems without inflorescences in 2003.
Inf.04 Number of inflorescences in 2004.
Veg.04 Number of stems without inflorescences in 2004.
Inf.05 Number of inflorescences in 2005.
Veg.05 Number of stems without inflorescences in 2005.
Inf.06 Number of inflorescences in 2006.
Veg.06 Number of stems without inflorescences in 2006.
Inf.07 Number of inflorescences in 2007.
Veg.07 Number of stems without inflorescences in 2007.
Inf.08 Number of inflorescences in 2008.
Veg.08 Number of stems without inflorescences in 2008.
Inf.09 Number of inflorescences in 2009.
Veg.09 Number of stems without inflorescences in 2009.
Inf.10 Number of inflorescences in 2010.
Veg.10 Number of stems without inflorescences in 2010.
Inf.11 Number of inflorescences in 2011.

Veg.11 Number of stems without inflorescences in 2011.

Source

Shefferson, R.P., R. Mizuta, and M.J. Hutchings. 2017. Predicting evolution in response to climate
change: the example of sprouting probability in three dormancy-prone orchid species. Royal Society
Open Science 4(1):160647.

Examples
library(lefko3)
data(cypa_data)
sizevector <- c(o, o0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)

StageVeCtOr <- C(“SD”, "P1", ”PZ”, ”P3”, ”SL”, ”D”, "XSm", ”Sm”, ”Md”, ”Lg”,
nXLgn)

repvector <- c(0, @0, 0, 0, 0, o0, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, o, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, o, 0, 0, @, @, Q)

«® -
«® -
..® -
..® -
..® -
..® -
~.® -
~.® -
S

©

A

propvector <- c(1,
indataset <- c(0, 0, @, @, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, @, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

equiv_input 5

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypa_data, noyears = 18, firstyear = 1994,

individcol = "plant_id"”, blocksize = 2, sizeacol = "Inf.94",
sizebcol = "Veg.94", repstracol = "Inf.94", fecacol = "Inf.94",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
HXSmII’ Ilsmll’ ”SD"’ IIP‘I Il)’
stage2 = c("SD", "sD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep”),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm”, NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type :c(1! 1! 1! 1’ 1’ 1) 1) 1) 3) 3)!
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3"”, "stage2", "stagel"),

size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", indivcol = "individ")
lambda3(cypmatrix2r)
equiv_input Create an Equivalence Vector for Each Population
Description

Function equiv_input() creates a data frame summarizing the degree to which an individual in
each stage of a life history is equivalent to a standard individual.

Usage

equiv_input(mpm, stage2 = NA, stagel = NA, age2 = NA, value = 1)

Arguments
mpm The lefkoMat object to be used in projection. Can be an example MPM if
function-based projection is planned.
stage2 A vector showing the name or number of a stage in occasion ¢ that should be set

to a positive number of individuals in the start vector. Abbreviations for groups
of stages are also usable (see Notes). This input is required for all stage-based
and age-by-stage MPMs. Defaults to NA.

stagel

age2

value

Value

equiv_input

A vector showing the name or number of a stage in occasion #-1 that should
be set to a positive number of individuals in the start vector. Abbreviations for
groups of stages are also usable (see Notes). This is only used for historical
MPMs, since the rows of hMPMs correspond to stage-pairs in times ¢ and #-1 to-
gether. Only required for historical MPMs, and will result in errors if otherwise
used.

A vector showing the age of each respective stage in occasion ¢ that should be
set to a positive number of individuals in the start vector. Only used for Leslie
and age-by-stage MPMs. Defaults to NA.

A vector showing the values, in order, of the number of individuals set for the
stage or stage-pair in question. Defaults to 1.

A list of class adaptEq, with four objects, which can be used as input in function project3().
The last three include the ahstages, hstages, and agestages objects from the lefkoMat object
supplied in mpm. The first element in the list is a data frame with the following variables:

stage2
stage_id_2
stagel
stage_id_1
age2

row_num

value

Notes

Stage at occasion .

The stage number associated with stage?2.

Stage at occasion #-1, if historical. Otherwise NA.
The stage number associated with stage1.

The age of individuals in stage?2 and, if applicable, stage1. Only used in age-
by-stage MPMs.

A number indicating the respective starting vector element.

Number of individuals in corresponding stage or stage-pair.

Entries in stage2, and stage1 can include abbreviations for groups of stages. Use rep if all repro-
ductive stages are to be used, nrep if all mature but non-reproductive stages are to be used, mat if
all mature stages are to be used, immat if all immature stages are to be used, prop if all propagule
stages are to be used, npr if all non-propagule stages are to be used, obs if all observable stages are
to be used, nobs if all unobservable stages are to be used, and leave empty or use all if all stages
in stageframe are to be used.

Examples

library(lefko3)
data(cypdata)

data(cypa_data)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",

nXLgn)

repvector <- c(0, 0,

’ ’ ’ 71717171y1)

0, 0, 0, 0
obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)

equiv_input

matvector <- c(@, 0, o0, 0, 0,
immvector <- c(o, 1, 1, 1, 1, 0, O,
propvector <- c(1, o0, 0, 0, @, 0, 0, 0, 0, 0, Q)
indataset <- c(0, 0, @, @, 0, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 9, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cycaraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cyparaw_v1 <- verticalize3(data = cypa_data, noyears = 18, firstyear = 1994,

individcol = "plant_id", blocksize = 2, sizeacol = "Inf.94",
sizebcol = "Veg.94", repstracol = "Inf.94", fecacol = "Inf.94",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"Xsm”, "sm”, "SD", "P1"),
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)
cyp_supp_listl <- list(cypsupp2r, cypsupp2r)

cycamatrix2r <- rlefko2(data = cycaraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel"),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypamatrix2r <- rlefko2(data = cyparaw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2"”, patchcol = "patchid”, indivcol = "individ")

cyp_mpm_list <- list(cycamatrix2r, cypamatrix2r)

cyca2_start <- start_input(cycamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c(500, 100, 200))

cypa2_start <- start_input(cypamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c (5000, 1000, 2000))

cyp_start_list <- list(cyca2_start, cypa2_start)

invade3

cyp2_dv <- density_input(cypamatrix2r, stage3 = c("SD", "P1"),
stage2 = c("rep”, "rep"), style = c(1, 1), alpha = c(0.5, 1.2),
beta = c(1.0, 2.0), type = c(2, 1))

cyp_dv_list <- list(cyp2_dv, cyp2_dv)

cyp_eq <- equiv_input(cycamatrix2r,
stage2 = c(”SD”, "P1", "SL”, "D", "XSm", "Sm", "Md", "Lg", "XLg"),
value = c(@, 1, 1, 1, 1, 1, 1, 1, 1))

eq_list <- list(cyp_eq, cyp_eq)

cyp_comm_proj <- project3(mpms =
density = cyp_dv_list, times =

cyp_mpm_list, starts =
10)

cyp_start_list,

summary (cyp_comm_proj)

invade3

Run Pairwise and Multiple Invasion Analysis

Description

Function invade3 runs pairwise and multiple invasion analyses.

Usage

invade3(
axis = NULL,
mpm = NULL,
vrm = NULL,
stageframe = NULL,
supplement = NULL,
equivalence = NULL,
starts = NULL,
years = NULL,
patches = NULL,
tweights = NULL,
format = NULL,
entry_time = NULL,
sp_density = NULL,

ind_terms = NULL,
dev_terms = NULL,
fb_sparse = NULL,
firstage = NULL,

finalage = NULL,

fecage_min = NULL,
fecage_max = NULL,

invade3

cont = NULL,

prebreeding = NULL,
fecmod = NULL,
density = NULL,
density_vr = NULL,

stochastic

NULL,

A_only = NULL,
integeronly = NULL,
fitness_table = NULL,

trait_optima

zap_min =

nreps = 1L

= NULL,

NULL,
converged_only = NULL,
err_check = NULL,
var_per_run = 2L,
substoch = oL,
elast_mult = 0.995,

’

times = 10000L,
fitness_times = 100L,
700,

exp_tol =
theta_tol
threshold
loop_max =

Arguments

axis

mpm
vrm

stageframe

supplement

equivalence

1e+08,
1e-08,

150L

The adaptAxis object detailing all variant characteristics. Essentially, a data
frame giving the values of all changes to vital rates and transition elements to
test, where each value is change is given by row.

An MPM of class lefkoMat, for use if using existing MPMs.

A vrm_input object corresponding to a distinct MPM that will be created during
analysis. Requires a stageframe, entered in argument stageframe.

A stageframe defining stages and the life cycle for the entered object in argument
vrms. Must be of class stageframe.

An optional data frame of class 1efkoSD providing supplemental data that should
be incorporated into function-based MPMs. See supplemental() for details.
Use only with argument vrm.

An optional object of class adaptEq giving the degree to which individuals in
each stage are equivalent to one another. May also be a numeric vector, in which
case the vector must have the same number of elements as the number of rows
in the associated MPM, with each element giving the effect of an individual of
that age, stage, age-stage, or stage-pair, depending on whether the MPM is age-
based, ahistorical stage-based, age-by-stage, or historical stage-based, respec-
tively. Numeric entries used in these vectors can be thought of as Lotka-Volterra
interaction terms, such as are used in multiple species competition models.

10

starts

years

patches

tweights

format

entry_time

sp_density

ind_terms

dev_terms

fb_sparse

invade3

An optional 1lefkoSV object, which is a data frame providing the starting num-
bers of individuals of each stage. If not provided, then all projections start with
a single individual per stage.

An optional term corresponding to a single integer vector of time t values. If a
vector shorter than times is supplied, then this vector will be cycled. Defaults
to a vector of all detected years in argument mpm or argument vrm.

An optional single string giving a single pop-patch to be used during invasion
analysis. Defaults to the population-level set or the first patch, depending on
whether the former exists.

An optional numeric vector or matrice denoting the probabilities of choosing
each matrix in each MPM in a stochastic projection. If a matrix, then a first-
order Markovian environment is assumed, in which the probability of choosing
a specific annual matrix depends on which annual matrix is currently chosen. If
an element of the list is a vector, then the choice of annual matrix is assumed
to be independent of the current matrix. Defaults to equal weighting among
matrices.

An optional integer indicating the kind of function-based MPM to create, if
argument vrm is provided. Possible choices include: 1, Ehrlen-format historical
MPM; 2, deVries-format historical MPM; 3, ahistorical MPM (default); 4, age-
by-stage MPM; and 5, Leslie (age-based) MPM. Defaults to 3.

An optional integer vector giving the entry time for each variant into each sim-
ulation. Defaults to a zero vector with length equal to the number of variants to
run concurrently in each simulation, as given by argument var_per_run. Note
that if two variants are to be run at a time, as in a pairwise invasion analysis,
then the length of the vector should be equal to 2.

An optional argument for use with argument vrm that specifies the spatial density
to be used in each time step. If used, then may either be a numeric vector giving
a single spatial density for each time step. If vectors are shorter than specified
in times, then these values will be cycled.

An optional argument providing values of individual or environmental covariate
values for argument vrm. Should be set to a single data frame with 3 columns
giving values for up to 3 covariates across time (rows give the time order of
these values). Unused terms within the data frame must be set to @ (use of NA
will produce errors). If the number of rows is less than times, then these values
will be cycled.

An optional data frame including 14 columns and up to times rows showing the
values of the deviation terms to be added to each linear vital rate. The column
order should be: 1: survival, 2: observation, 3: primary size, 4: secondary size,
5: tertiary size, 6: reproduction, 7: fecundity, 8: juvenile survival, 9: juvenile
observation, 10: juvenile primary size, 11: juvenile secondary size, 12: juvenile
tertiary size, 13: juvenile reproduction, and 14: juvenile maturity transition.
Unused terms must be set to @ (use of NA will produce errors). Single or small
numbers of values per vital rate model are also allowed, and if the number of
rows is less than times, then the terms will be cycled.

A logical value indicating whether function-based MPMs should be produced in
sparse matrix format. Defaults to FALSE.

invade3

firstage

finalage

fecage_min

fecage_max

cont

prebreeding

fecmod

density

density_vr

stochastic

A_only

integeronly

fitness_table

trait_optima

11

An optional integer used for function-based Leslie and age-by-stage MPMs giv-
ing the starting age in such MPMs. Use only if the MPM is both function-based
and has age structure. Typically, the starting age in such MPMs should be set to
0 if post-breeding and 1 if pre-breeding. All other MPMs should be set to 0.

An optional integer used for function-based Leslie and age-by-stage MPMs giv-
ing the final age in such MPMs. Use only if the MPM is both function-based
and has age structure.

An optional integer used for function-based Leslie MPMs giving the first age at
which organisms can reproduce. Use only if the MPM is both function-based
and has age structure. Defaults to the value given in firstage.

An optional integer used for function-based Leslie MPMs giving the final age
at which organisms can reproduce. Use only if the MPM is both function-based
and has age structure. Defaults to the value given in finalage.

An optional logical value for function-based Leslie and age-by-stage MPMs
stating whether the MPM should should include a stasis transition within the
final age. This should be used only when an organism can maintain the demo-
graphic characteristics of the final described age after reaching that age.

An optional logical value indicating whether the life cycle is prebreeding (TRUE)
or postbreeding (FALSE). Defaults to TRUE.

An optional numeric value for function-based MPMs giving scalar multipliers
for fecundity terms, when two fecundity variables are used for a collective fe-
cundity per individual.

An optional data frames of class lefkoDens, which provides details for density
dependence in MPM elements and is created with function density_input().
Defaults to NULL, in which case no density dependence is built into matrix ele-
ments.

An optional data frame of class 1lefkoDensVR, which provides details for density

dependence in vital rate models and has been created with function 1ink[lefko3]{density_vr3}().

Can only be used with function-based projections. Defaults to NULL, in which
case no density dependence is built into vital rates.

A logical value indicating whether the projection will be run as a temporally
stochastic projection. Defaults to FALSE.

A logical value indicating whether to alter survival and fecundity matrix ele-
ments separately prior to creating the overall A matrix, or whether to alter ele-
ments directly on A matrices. Defaults to TRUE, and should be kept to that setting
unless some matrix elements to be altered are sums of survival and fecundity
transitions.

A logical value indicating whether to round the number of individuals projected
in each stage at each occasion down to the next lower integer. Defaults to FALSE.

A logical value dictating whether to include a data frame giving Lyapunov co-
efficients for all combinations of variants tested. Necessary for the creation of
pairwise invasibility plots (PIPs). Defaults to TRUE.

A logical value indicating whether to assess the optimal values of traits, gener-
ally as kinds of evolutionary stage equilibrium (ESS) points. Trait optimiza-
tion is conducted via elasticity analysis of traits that are variable within the
trait_axis table. Defaults to FALSE.

12

zap_min

converged_only

err_check

var_per_run

substoch

elast_mult

nreps
times

fitness_times

exp_tol

theta_tol

threshold

loop_max

Value

invade3

A logical value indicating whether to treat traits and fitness as 0 when their
absolute values are less than the value given in argument threshold.

A logical value indicating whether to show predicted trait optima only in cases
where the Lyapunov coefficient in elasticity analysis has converged to 0. De-
faults to TRUE.

A logical value indicating whether to include an extra list of output objects for
error checking. Can also be set to the text value "extreme”, in which case all
err_check output plus a multiple level list with each MPM used in each time
step will be output.

The number of variants to run in each simulation. Defaults to 2, resulting in
pairwise invasibility analysis. See Notes for details.

An integer value indicating whether to force survival- transition matrices to be
substochastic in density dependent and density independent simulations. De-
faults to @, which does not enforce substochasticity. Alternatively, 1 forces all
survival-transition elements to range from 0.0 to 1.0, and forces fecundity to be
non-negative; and 2 forces all column rows in the survival-transition matrices
to total no more than 1.0, in addition to the actions outlined for option 1. Both
settings 1 and 2 change negative fecundity elements to 0.0, while setting @ does
not alter fecundity.

A multiplier for traits to assess the elasticity of fitness in trait optimization. De-
faults to @.995.

The number of replicate projections. Defaults to 1.

Number of occasions to iterate per replicate. Defaults to 10000.

An integer giving the number of time steps at the end of each run to use to
estimate the fitness of the respective genotype. Defaults to 100, but if times <
100, then is set equal to times.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

The lower limit for the absolute value of fitness, below which fitness is rounded
to 0. Defaults to 0.00000001.

An integer value denoting the number of search cycles allowed per ESS during
ESS optimization. Defaults to 150.

A list of class adaptInv, with the following elements:

fitness

variants_out

A data frame giving the Lyapunov coefficients estimated for each variant, per
replicate.

A two-level list with the top level list having number of elements equal to the
number of variants, and the lower level corresponding to the number of repli-
cates. Each element of the lower level list is a matrix showing the number of
individuals in each stage (row) at each time (column).

invade3 13

N_out A list with the number of elements equal to the number of replicates. Each
element within this list is data frame showing the number of individuals of each
species or genotype alive at each time. The number of rows are equal to the
number of MPMs used, and the columns correspond to the time steps.

stageframe_list
A list in which each element is the stageframe for each MPM used.

hstages_list A list giving the used hstages data frames, which identify the correct stage
pairing for each row / column in each historical MPM utilized.

agestages_list A list giving the used agestages data frames, which identify the correct age-
stage pairing for each row / column in each age-by-stage MPM utilized.

labels A small data frame giving the the population and patch identities for each MPM
entered.
err_check An optional list composed of an additional six lists, each of which has the num-

ber of elements equal to the number of MPMs utilized. List output include
allstages_all, which gives the indices of estimated transitions in MPMs con-
structed by function invade3() from input vital rate models; allmodels_all,
which provides all vital rate models as decomposed and interpreted by func-
tion invade3(); equivalence_list, which gives the stage equivalence for
density calculations across MPMs; density_list, which gives the density
inputs utilized; dens_index_list, which provides indices used to identify ma-
trix elements for density dependence; and density_vr_list, which gives the
density_vr inputs utilized.

Notes

The argument var_per_run establishes the style of simulation to run. Entering var_per_run =1
runs each variant singly. Entering var_per_run = 2 runs pairwise invasibility analysis, trying each
pair permutation of variants. Greater values will lead to multiple invasibility analysis with different
permutations of groups. For example, var_per_run = 3 runs each permutation of groups of three.
The integer set must be positive, and must not be larger than the number of variants.

When optima = TRUE, ESS values for traits that vary in the input adaptAxis data frame are evalu-
ated. The methodology is that originally developed in Benton and Grant (1999, Evolution 53:677-
688), as communicated in Roff (2010, Modeling evolution: an introduction to numerical methods,
Oxford University Press). In essence, function invade3 determines which traits vary among all
traits noted in the input trait axis. A new trait axis is then created with values of variable traits mul-
tiplied by 0.995, and this new trait axis is composed entirely of invaders that will be paired against
each respective row in the original trait axis. These two trait axis frames are then used to conduct
pairwise invasibility elasticity analyses, particularly noting where fitness values and trends invert.
Note that this optimization approach really only works with one variable trait.

Examples

library(lefko3)
data(cypdata)

sizevector <- c(0, 0, 0, @, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c("SD”, "P1", "SL", "D”, "XSm", "Sm”, "Md", "Lg”, "XLg")
repvector <- c(0, @, @, o, 1, 1, 1, 1, 1)

14

obsvector <- c(0, 0, 0, o, 1, 1, 1, 1
matvector <- c(@, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o0, 1, 1, 0, @, @, 0, @

propvector <- c(1, 0, 0)
indataset <- c(0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, 0, 9, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes =
repstatus = repvector, obsstatus =
propstatus = propvector, immstatus =
binhalfwidth = binvec)

sizevector, stagenames = stagevector,
obsvector, matstatus = matvector,
immvector, indataset = indataset,

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "SL", "D",
"Xsm”, "sm”, "SD", "P1"),
Stagez = C(HSD“, “SD“, IIP1 II, ”SL”, NSLM, IISLII’ Mrepll,

"rep"),
eststage3 = c(NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, "XSm", "XSm", "XSm"”, NA, NA),
givenrate = c(0.10, 0.40, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, 1000, 1000),
type =c(1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <-
year = "all”
size = c("si

rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
, patch = "all", stages = c("stage3"”, "stage2", "stagel"),
ze3added”, "size2added"), supplement = cypsupp2r,

yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
cypmean <- lmean(cypmatrix2r)

cyp_start <- start_input(cypmean, stage2 = c("SD", "P1", "D"),
value = c(1000, 200, 4))

c2d_4 <- density_input(cypmean, stage3 = c("P1", "P1"), stage2= c("SD", "rep"),
style = 2, time_delay = 1, alpha = 0.005, beta = 0.000005, type = c(2, 2))

A simple projection allows us to find a combination of density dependence

and running time that produces a stable quasi-equilibrium

cyp_proj <- projection3(cypmean, times = 250, start_frame = cyp_start,
density = c2d_4, integeronly = TRUE)

plot(cyp_proj)

cyp_ta <- trait_axis(stageframe = cypframe_raw,

stage3 = rep("P1", 15),
stage2 = rep("rep"”, 15),
multiplier = seq(from = 0.1, to = 10.0, length.out = 15),

type = rep(2, 15))

invade3

plot.adaptInv 15

cyp_inv <- invade3(axis = cyp_ta, mpm = cypmean, density = c2d_4, times = 350,
starts = cyp_start, entry_time = c(@, 250), fitness_times = 30,
var_per_run = 2)

plot(cyp_inv)

plot.adaptInv Create Contour Plot of Pairwise Invasibility Analysis Results

Description

Function plot.adaptInv plots pairwise invasibility contour plots. This function is based on code
derived from Roff’s Modeling Evolution: An Introduction to Numerical Methods (2010, Oxford
University Press).

Usage

S3 method for class 'adaptInv'
plot(

X,

xlab = "Resident”,

ylab = "Invader”,

res_variant = 1,

inv_variant = 2,

repl = 1,

pip = TRUE,
elast = FALSE,
run = 1,
filled = TRUE,
plot.title,
plot.axes,
axes = TRUE,

frame.plot = TRUE,
auto_ylim = TRUE,
auto_col = TRUE,
auto_lty = TRUE,
auto_title = FALSE,

)

Arguments
X An adaptInv object, created with function invade3().
xlab The x axis label forthe contour plot. Defaults to Resident.
ylab The y axis label forthe contour plot. Defaults to Invader.

res_variant The number of the variant representing the resident subpopulation.

16

inv_variant

repl

pip

elast

run

filled

plot.title
plot.axes
axes
frame.plot

auto_ylim

auto_col

auto_lty

auto_title

Value

plot.adaptInv

The number of the variant representing the mutant subpopulation.

The replicate number to plot, in the fitness data frame within the adaptInv
object entered in argument x.

A logical value indicating whether to produce a pairwise invasibility plot. If
FALSE, then will produce a diagnostic population size plot. Defaults to TRUE.

A logical value indicating whether to produce an elasticity plot. Such plots
can only be produced when trait optimization is performed during invasibility
analysis. Defaults to FALSE.

An integer giving the run to plot if pip = FALSE.

A logical value indicating whether to produce a filled contour plot, or a stan-
dard contour plot. Defaults to TRUE, but reverts if invader fitness is consistently
positive, or consistently negative, relative to the resident.

A title for the plot.

A generic parameter providing axis information for pairwise invasibility plots.
A logical value indicating whether to include axis lines. Defaults to TRUE.

A logical value indicating whether to frame the plot.

A logical value indicating whether the maximum of the y axis should be deter-
mined automatically. Defaults to TRUE, but reverts to FALSE if any setting for
ylimis given. Used only if pip = FALSE.

A logical value indicating whether to shift the color of lines associated with each
patch automatically. Defaults to TRUE, but reverts to FALSE if any setting for col
is given. Used only if pip = FALSE.

A logical value indicating whether to shift the line type associated with each
replicate automatically. Defaults to TRUE, but reverts to FALSE if any setting for
1ty is given. Used only if pip = FALSE.

A logical value indicating whether to add a title to each plot. The plot is com-
posed of the concatenated population and patch names. Defaults to FALSE. Used
only if pip = FALSE.

Other parameters used by functions plot.default().

A contour plot showing the overall fitness dynamics of the invader variant, assuming a pairwise
invasibility analysis.

Notes

By default, function plot.adaptInv produces a filled contour plot in which grey regions show
where the invader has positive fitness relative to the resident, and white regions show where the
invader has negative fitness relative to the resident. Fitness here refers to the Lyapunov coefficient,
calculated over the final fitness_times in the original call to function invade3().

plot.adaptInv 17

Examples

library(lefko3)
data(cypdata)

sizevector <- c(o0, 0, 0, @, 1, 2.5, 4.5, 8, 17.5)
StageVeCtOr‘ <_ C(IISDH IIP-I n HSLII’ IIDN, ”XSmII, Ilsmll, VIMdII, IILgI), IIXLgII)

repvector <- c(0, @, @, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, o, 1, 1, 1, 1, 1)
matvector <- c(@, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 0, 0, 0, @, 0, Q)

propvector <- c(1, 0, 0, @, @0, 0, 0, 0, 0)
indataset <- c(0, @, o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1l <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("SD", "sb", "P1", "SL", "SL", "SL", "rep",
Nrep") R
eststage3 = c(NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, ©.40, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, 1000, 1000),
type =c(1, 1, 1, 1, 1,1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")
cypmean <- lmean(cypmatrix2r)

cyp_start <- start_input(cypmean, stage2 = c("SD", "P1", "D"),
value = c(1000, 200, 4))

c2d_4 <- density_input(cypmean, stage3 = c("P1", "P1"), stage2= c("SD", "rep"),
style = 2, time_delay = 1, alpha = 0.005, beta = 0.000005, type = c(2, 2))

A simple projection allows us to find a combination of density dependence
and running time that produces a stable quasi-equilibrium
cyp_proj <- projection3(cypmean, times = 250, start_frame = cyp_start,

18

density = c2d_4, integeronly = TRUE)
plot(cyp_proj)

cyp_ta <- trait_axis(stageframe = cypframe_raw,

stage3 =
stage2

rep("P1", 15),
rep("rep"”, 15),

multiplier = seq(from = 0.1, to = 10.0, length.out = 15),
type = rep(2, 15))

cyp_inv <- invade3(axis = cyp_ta, mpm = cypmean, density = c2d_4, times
starts = cyp_start, entry_time = c(@, 250), fitness_times = 30,

var_per_run = 2)
plot(cyp_inv)

plot.adaptProj

350,

plot.adaptProj Create Plot of Community Projection

Description

Function plot.adaptProj plots community projections.

Usage

S3 method for class 'adaptProj'

plot(
X’

repl =1

’

auto_ylim = TRUE,
auto_col = TRUE,
auto_lty = TRUE,
auto_title = FALSE,

Arguments

X
repl

auto_ylim

auto_col

auto_lty

An adaptProj object.

The replicate to plot. Defaults to 1, in which case the first replicate is plotted.

A logical value indicating whether the maximum of the y axis should be deter-
mined automatically. Defaults to TRUE, but reverts to FALSE if any setting for

ylimis given.

A logical value indicating whether to shift the color of lines associated with each
patch automatically. Defaults to TRUE, but reverts to FALSE if any setting for col

is given.

A logical value indicating whether to shift the line type associated with each
replicate automatically. Defaults to TRUE, but reverts to FALSE if any setting for

1ty is given.

plot.adaptProj 19

auto_title A logical value indicating whether to add a title to each plot. The plot is com-
posed of the concatenated population and patch names. Defaults to FALSE.

Other parameters used by functions plot.default() and lines().

Value

A plot of the results of a project3() run.

Notes

Output plots are currently limited to time series of population size.

Examples

library(lefko3)
data(cypdata)

data(cypa_data)
sizevector <- c(0, o, o0, 0, 0, o, 1, 2.5, 4.5, 8, 17.5)

Stagevector <- C(IISDIV’ er-Ilr’ ”PZ”, ”P3”, IISLII, ”D", "XSm", ”Sm”, "Md", "Lg",
”XLg“)

repvector <- c(0, @0, 9, 0, 0, @0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, @, @0, @, @, @, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
indataset <- c(0, @, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, o0, 0, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cycaraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cyparaw_v1 <- verticalize3(data = cypa_data, noyears = 18, firstyear = 1994,

individcol = "plant_id"”, blocksize = 2, sizeacol = "Inf.94",
sizebcol = "Veg.94", repstracol = "Inf.94", fecacol = "Inf.94",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
HXSmII’ IISmII’ HSDII’ IIP1 Il)’
stage2 = c("SD”, "SD", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep”,

20

project3

eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)

cyp_supp_list1 <- list(cypsupp2r, cypsupp2r)

cycamatrix2r <- rlefko2(data = cycaraw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", indivcol = "individ")

cypamatrix2r <- rlefko2(data = cyparaw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3”, "stage2", "stagel"),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", indivcol = "individ")

cyp_mpm_list <- list(cycamatrix2r, cypamatrix2r)

cyca2_start <- start_input(cycamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c(500, 100, 200))

cypa2_start <- start_input(cypamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c (5000, 1000, 2000))

cyp_start_list <- list(cyca2_start, cypa2_start)

cyp2_dv <- density_input(cypamatrix2r, stage3 = c("SD", "P1"),
stage2 = c("rep”, "rep"), style = c(1, 1), alpha = c(0.5, 1.2),
beta = c(1.0, 2.0), type = c(2, 1))

cyp_dv_list <- list(cyp2_dv, cyp2_dv)

cyp_comm_proj <- project3(mpms = cyp_mpm_list, starts = cyp_start_list,
density = cyp_dv_list, times = 10)

nan

plot(cyp_comm_proj, lwd = 2, bty = "n")

project3 Project Multiple MPMs With or Without Density Dependence

Description

Function project3 uses pre-existing or function-based MPMs to run community projection sim-
ulations, in which different populations are run as separate MPMs. Density dependence can be
used with individual equivalence vectors specifying Lotka-Volterra coefficients to adjust overall
population sizes to make them comparable.

Usage

project3(

project3 21

mpms = NULL,
vrms = NULL,
stageframes = NULL,
supplements = NULL,

equivalence = NULL,
starts = NULL,
years = NULL,
patches = NULL,
tweights = NULL,
format = NULL,
entry_time = NULL,
sp_density = NULL,

ind_terms = NULL,
dev_terms = NULL,
fb_sparse = NULL,
firstage = NULL,

finalage = NULL,
fecage_min = NULL,
fecage_max = NULL,
cont = NULL,

fecmod = NULL,
density = NULL,
density_vr = NULL,
err_check = NULL,
stochastic = FALSE,
integeronly = FALSE,
substoch = oL,
nreps = 1L,

times = 10000L,
prep_mats = 20L,
force_fb = FALSE,
exp_tol = 700,
theta_tol = 1e+08

)
Arguments

mpms An optional list of MPMs. Each MPM must be of class lefkoMat.

vrms An optional list of vrm_input objects, each corresponding to a distinct MPM
that will be created during projection. Each vrm_input object requires its own
stageframe, entered in the same order via argument stageframes.

stageframes An optional list of stageframes, corresponding in number and order to the MPMs
in argument vrms. Each stageframe must be of class stageframe.

supplements An optional list of data frames of class 1lefkoSD that provide supplemental data

that should be incorporated into function-based MPMs. If used, then should be
the same number of data frames as the number of MPMs provided in the list for
argument vrms. MPMs that do not need supplemental data should be entered as
NULL in this list. See supplemental() for details.

22

equivalence

starts

years

patches

tweights

format

entry_time

sp_density

project3

An optional numeric vector, list of numeric vectors, data frame of class adaptEq,
or list of data frames of class adaptEq. If a numeric vector, then must have the
same number of elements as the number of MPMs, with each element giving
the effect of an individual of each MPM relative to a reference individual. If
a list of vectors, then the list should be composed of as many numeric vectors
as MPMs, with each vector giving the effect of each individual in each stage
relative to a reference individual. Data frames of class adaptEq, and lists of
such data frames, can be made with function equiv_input (). Numeric entries
used in these vectors can be thought of as Lotka-Volterra interaction terms, such
as are used in multiple species competition models.

An optional list of 1efkoSV objects, which are data frames providing the starting
numbers of individuals of each stage. If provided, then one is needed per MPM.
If not provided, then all projections start with a single individual of each stage
per MPM.

An optional term corresponding either to a single integer vector of time t values,
if all MPMs will use the same time t or set of time t’s, or a list of such vectors
with each vector corresponding to each MPM in order. In the latter case, a vector
composed of a single NA value is interpreted to mean that all time t values in the
MPM should be utilized. If a vector shorter than times is supplied, then this
vector will be cycled.

An optional string vector with length equal to the number of MPMs, detailing
the name of each patch to project for each MPM, in order. Only a single pop-
patch may be projected for each MPM given. A value of NA can be supplied to
indicate that the population-level matrices should be projected (if argument mpms
is used and a population-level set of matrices exist), or that the first patch noted
should be used. Defaults to the population-level set or the first patch, depending
on whether the former exists.

An optional list composed of numeric vectors or matrices denoting the proba-
bilities of choosing each matrix in each MPM in a stochastic projection. If an
element of the list is a matrix, then a first-order Markovian environment is as-
sumed, in which the probability of choosing a specific annual matrix depends
on which annual matrix is currently chosen. If an element of the list is a vector,
then the choice of annual matrix is assumed to be independent of the current ma-
trix. Defaults to equal weighting among matrices. If used, then one element per
MPM is required, with equal weighting assumed for any element set to NULL.

An optional integer vector indicating the kind of function-based MPM to create
for each vrm_input object entered in argument vrms. Possible choices include:
1, Ehrlen-format historical MPM; 2, deVries-format historical MPM; 3, ahistor-
ical MPM (default); 4, age-by-stage MPM; and 5, Leslie (age-based) MPM.

An optional integer vector giving the entry time for each MPM into the projec-
tion. Defaults to a zero vector with the length of the number of MPMs, as given
either by argument mpms or vrms.

An optional argument for use with vrm_input objects that specifies the spatial
density to be used in each time step. If used, may either be a numeric vector
giving a single spatial density for each vrm_input object entered in argument
vrms (in this case, the value of spatial density given for each vrm_input object
will be held constant through the projection), or a list of as many numeric vectors

project3

ind_terms

dev_terms

fb_sparse

firstage

finalage

fecage_min

fecage_max

cont

23

as vrm_input objects, with the length of each vector giving the spatial density at
each time step. If vectors are shorter than specified in times, then these values
will be cycled.

An optional argument providing values of individual or environmental covariate
values for vrm_input objects used in function-based projection. Can be set
either to a single data frame with 3 columns giving values for up to 3 covariates
across time (rows give the time order of these values), or a list of as many such
data frames as vrm_input objects. In the latter case, vrm_input objects that do
not use such covariates should have the associated element set to NULL. Unused
terms within each data frame must be set to @ (use of NA will produce errors.) If
the number of rows is less than times, then these values will be cycled.

An optional list of data frames, one for each vrm_input object. Each should
include 14 columns and up to times rows showing the values of the deviation
terms to be added to each linear vital rate. The column order should be: 1:
survival, 2: observation, 3: primary size, 4: secondary size, 5: tertiary size,
6: reproduction, 7: fecundity, 8: juvenile survival, 9: juvenile observation, 10:
juvenile primary size, 11: juvenile secondary size, 12: juvenile tertiary size, 13:
juvenile reproduction, and 14: juvenile maturity transition. Unused terms must
be set to @ (use of NA will produce errors). Single or small numbers of values per
vital rate model are also allowed, and if the number of rows is less than times,
then the terms will be cycled.

A logical vector indicating whether function-based MPMs should be produced
in sparse matrix format. Defaults to FALSE for each MPM.

An optional integer vector used for function-based Leslie and age-by-stage MPMs
giving the starting ages in such MPMs. Use only if at least one MPM is both
function-based and has age structure. Typically, the starting age in such MPMs
should be set to @ if post-breeding and 1 if pre-breeding. All other MPMs should
be set to @. Do not use if no MPM has age structure.

An optional integer vector used for function-based Leslie and age-by-stage MPMs
giving the final ages in such MPMs. Use only if at least one MPM is both
function-based and has age structure. Do not use if no MPM has age structure.

An optional integer vector used for function-based Leslie MPMs giving the first
age at which organisms can be reproductive in such MPMs. Use only if at
least one MPM is a function-based Leslie MPM. Defaults to the values given in
firstage.

An optional integer vector used for function-based Leslie MPMs giving the final
age at which organisms can be reproductive in such MPMs. Use only if at
least one MPM is a function-based Leslie MPM. Defaults to the values given in
finalage.

An optional vector used for function-based Leslie and age-by-stage MPMs stat-
ing whether the MPM should should include a stasis transition within the final
age. This should be used only when an organism can maintain the demographic
characteristics of the final described age after reaching that age. Can be entered
as a logical vector or an integer vector. MPMs without age structure should be
entered as @ or FALSE. Do not use if no MPM has age structure.

24

fecmod

density

density_vr

err_check

stochastic

integeronly

substoch

nreps
times

prep_mats

force_fb

exp_tol

theta_tol

project3

An optional vector used for function-based MPMs giving scalar multipliers for
fecundity terms, when two fecundity variables are used for a collective fecundity
per individual. Each entry refers to each vrm_input object in argument vrms,
in the same order.

An optional list of data frames of class lefkoDens, which provide details for
density dependence in MPM elements and have been created with function
density_input(). If used, then one such data frame per MPM is required.
MPMs to be run without density dependence should be set to NULL.

An optional list of data frames of class lefkoDensVR, which provide details for
density dependence in vital rate models and have been created with function
link[lefko3]1{density_vr}(). If used, then one such data frame per MPM is
required. MPMs to be run without vital describing density dependence relation-
ships in vital rates should be set to NULL. Can only be used with function-based
projections.

A logical value indicating whether to include an extra list of output objects for
error checking. Can also be set to the text value "extreme”, in which case all
err_check output plus a multiple level list with each MPM used in each time
step will be output.

A logical value indicating whether the projection will be run as a temporally
stochastic projection. Defaults to FALSE.

A logical value indicating whether to round the number of individuals projected
in each stage at each occasion in each MPM to the nearest integer. Defaults to
FALSE.

An integer value indicating whether to force survival- transition matrices to be
substochastic in density dependent and density independent simulations. De-
faults to @, which does not enforce substochasticity. Alternatively, 1 forces all
survival-transition elements to range from 0.0 to 1.0, and forces fecundity to be
non-negative; and 2 forces all column rows in the survival-transition matrices
to total no more than 1.0, in addition to the actions outlined for option 1. Both
settings 1 and 2 change negative fecundity elements to 0. @.

The number of replicate projections. Defaults to 1.
Number of occasions to iterate per replicate. Defaults to 10000.

An integer value for use when creating function-based MPM projections. If us-
ing vrms input instead of mpms input, then this argument determines how many
matrices should be used as a limit to develop matrices prior to running the pro-
jection. See Notes for further details.

A logical value indicating whether to force function-based MPMs to be devel-
oped at each time step even if fewer than prep_mats. Defaults to FALSE.

A numeric value used to indicate a maximum value to set exponents to in the
core kernel to prevent numerical overflow. Defaults to 700.

A numeric value used to indicate a maximum value to theta as used in the neg-
ative binomial probability density kernel. Defaults to 100000000, but can be
reset to other values during error checking.

project3

Value

25

A list of class adaptProj, with the following elements:

comm_out

N_out

stageframe_list

hstages_list

agestages_list

labels

err_check

Notes

A two-level list with the top level list having number of elements equal to the
number of MPMs used as input, and the lower level corresponding to the number
of replicates. Each element of the lower level list is a data frame showing the
number of individuals in each stage at each time. Rows and columns in the data
frames correspond to stages and time steps, respectively.

A list with the number of elements equal to the number of replicates. Each
element within this list is data frame showing the number of individuals of each
species or genotype alive at each time. The number of rows are equal to the
number of MPMs used, and the columns correspond to the time steps.

A list in which each element is the stageframe for each MPM used.

A list giving the used hstages data frames, which identify the correct stage
pairing for each row / column in each historical MPM utilized.

A list giving the used agestages data frames, which identify the correct age-
stage pairing for each row / column in each age-by-stage MPM utilized.

A small data frame giving the the population and patch identities for each MPM
entered.

An optional list composed of an additional six lists, each of which has the num-
ber of elements equal to the number of MPMs utilized. List output include
allstages_all, which gives the indices of estimatedtransitions in MPMs con-
structed by function project3() from input vital rate models; allmodels_all,
which provides all vital rate models as decomposed and interpreted by func-
tion project3(); equivalence_list, which gives the stage equivalence for
density calculations across MPMs; density_list, which gives the density
inputs utilized; dens_index_list, which provides indices used to identify ma-
trix elements for density dependence; and density_vr_list, which gives the
density_vr inputs utilized.

This function has been optimized in the function-based approach such that if there are relatively
few matrices required per MPM to run the projection forward, then these matrices will be made
prior to running the projection. This approach saves time, but only if there are relatively few unique
matrices required for each MPM. If many or only unique MPMs are required at each time step, then
the matrices will be made on the fly during the projection itself. Such a situation will most likely
occur if each time step requires a new matrix resulting from a unique individual covariate value, or
if the density_vr argument is used. The key argument determining this behavior is prep_mats,
which provides the maximum limit for the number of matrices required per MPM in order to create
matrices prior to projection.

Examples

library(lefko3)
data(cypdata)

26

project3

data(cypa_data)

sizevector <- c(0, 0, 0, 0, @0, 0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”"SD”, "P1", "P2", "P3”, "SL", "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(0, @, 0, 0, 0, @0, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, @, 1, 1, 1, 1, 1, 1)
immvector <- c(o0, 1, 1, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, o0, 0, 0, 0, 0, 0, 0, 0, 0, Q)
indataset <- c(0, @, 0, @, @, 1, 1, 1, 1, 1, 1)
binvec <- c(0, @, 9, 0, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cycaraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cyparaw_v1 <- verticalize3(data = cypa_data, noyears = 18, firstyear = 1994,

individcol = "plant_id"”, blocksize = 2, sizeacol = "Inf.94",
sizebcol = "Veg.94", repstracol = "Inf.94", fecacol = "Inf.94",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD", "P1", "P2", "P3", "SL", "D",
"XSm", "Sm", "SD", "P1"),
stage2 = c("sSD", "sp", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm"”, "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)
cyp_supp_list1 <- list(cypsupp2r, cypsupp2r)

cycamatrix2r <- rlefko2(data = cycaraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3", "stage2", "stagel”),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypamatrix2r <- rlefko2(data = cyparaw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

summary.adaptInv 27

cyp_mpm_list <- list(cycamatrix2r, cypamatrix2r)

cyca2_start <- start_input(cycamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c(500, 100, 200))

cypa2_start <- start_input(cypamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c(5000, 1000, 2000))

cyp_start_list <- list(cyca2_start, cypa2_start)

cyp2_dv <- density_input(cypamatrix2r, stage3 = c("SD", "P1"),
stage2 = c("rep”, "rep"), style = c(1, 1), alpha = c(0.5, 1.2),
beta = c(1.0, 2.0), type = c(2, 1))

cyp_dv_list <- list(cyp2_dv, cyp2_dv)

cyp_comm_proj <- project3(mpms = cyp_mpm_list, starts = cyp_start_list,
density = cyp_dv_list, times = 10)

summary (cyp_comm_proj)

summary.adaptInv Summarize adaptlnv Objects

Description

Function summary.adaptInv() summarizes adaptInv objects.

Usage
S3 method for class 'adaptInv'
summary (object, ...)

Arguments
object An adaptInv object.

Other parameters currently not utilized.

Value

This function only produces text summarizing the numbers of variants, time steps, replicates, ESS
optima, etc.

Examples

library(lefko3)
data(cypdata)

sizevector <- c(0, 0, 0, o0, 1, 2.5, 4.5, 8, 17.5)
stagevector <- c(”SD”, "P1", "SL”, "D", "XSm", "Sm", "Md", "Lg", "XLg")

28

summary.adaptInv

repvector <- c(9, @, @, o, 1, 1, 1, 1, 1)
obsvector <- c(0, 0, 0, o0, 1, 1, 1, 1, 1)
matvector <- c(0, @, o, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, @, @0, 0, 0, @, 0)

propvector <- c(1, 0, @, 0, 0, 0, 0, 0, 0)
indataset <- c(0, 0, o, 1, 1, 1, 1, 1, 1)
binvec <- c(@, 0, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.04", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("SD”, "P1", "SL", "D",
HXSmII’ Ilsmll’ HSDII’ IIP-I Il)’
stage2 = c("sD", "sb", "P1", "SL", "SL", "SL", "rep",
"rep”),
eststage3 = c(NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.40, 0.25, NA, NA, NA, NA, NA),

multiplier = c(NA, NA, NA, NA, NA, NA, 1000, 1000),
type =C(1y 1: 1: 1’ 1’ 1: 3: 3):
stageframe = cypframe_raw, historical = FALSE)

cypmatrix2r <- rlefko2(data = cypraw_v1, stageframe = cypframe_raw,
year = "all"”, patch = "all"”, stages = c("stage3”, "stage2", "stagel”),
size = c("size3added"”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", patchcol = "patchid”, indivcol = "individ")

cypmean <- lmean(cypmatrix2r)

cyp_start <- start_input(cypmean, stage2 = c("SD", "P1", "D"),
value = c(1000, 200, 4))

c2d_4 <- density_input(cypmean, stage3 = c("P1", "P1"), stage2= c("SD", "rep"),
style = 2, time_delay = 1, alpha = 0.005, beta = 0.000005, type = c(2, 2))

A simple projection allows us to find a combination of density dependence

and running time that produces a stable quasi-equilibrium

cyp_proj <- projection3(cypmean, times = 250, start_frame = cyp_start,
density = c2d_4, integeronly = TRUE)

plot(cyp_proj)

cyp_ta <- trait_axis(stageframe = cypframe_raw,
stage3 = rep("P1", 15),
stage2 = rep("rep”, 15),
multiplier = seq(from = 0.1, to = 10.0, length.out = 15),

summary.adaptProj 29

type = rep(2, 15))

cyp_inv <- invade3(axis = cyp_ta, mpm = cypmean, density = c2d_4, times = 350,
starts = cyp_start, entry_time = c(@, 250), fitness_times = 30,
var_per_run = 2)

summary (cyp_inv)

summary .adaptProj Summarize adaptProj Objects

Description

Function summary.adaptProj() summarizes adaptProj objects.

Usage

S3 method for class 'adaptProj'
summary (
object,
threshold = 1,
inf_alive = TRUE,
milepost = c(@, 0.25, 0.5, 0.75, 1),
ext_time = FALSE,

)
Arguments

object An adaptProj object.

threshold A threshold population size to be searched for in projections. Defaults to 1.

inf_alive A logical value indicating whether to treat infinitely large population size as
indicating that the population is still extant. If FALSE, then the population is
considered extinct. Defaults to TRUE.

milepost A numeric vector indicating at which points in the projection to assess detailed
results. Can be input as integer values, in which case each number must be
between 1 and the total number of occasions projected in each projection, or
decimals between 0 and 1, which would then be translated into the correspond-
ing projection steps of the total. Defaults to c(0, .25, 0.50, 0.75, 1.00).

ext_time A logical value indicating whether to output extinction times per population-

patch. Defaults to FALSE.

Other parameters currently not utilized.

summary.adaptProj

Value

Apart from a statement of the results, this function outputs a list with the following elements:

milepost_sums A data frame showing the number of replicates at each of the milepost times that
is above the threshold population/patch size.

extinction_times
A dataframe showing the numbers of replicates going extinct (ext_reps) and
mean extinction time (ext_time) per population-patch. If ext_time = FALSE,
then only outputs NA.

Notes

The inf_alive and ext_time options both assess whether replicates have reached a value of NaN
or Inf. If inf_alive = TRUE or ext_time = TRUE and one of these values is found, then the repli-
cate is counted in the milepost_sums object if the last numeric value in the replicate is above the
threshold value, and is counted as extant and not extinct if the last numeric value in the replicate
is above the extinction threshold of a single individual.

Extinction time is calculated on the basis of whether the replicate ever falls below a single individ-
ual. A replicate with a positive population size below 0.0 that manages to rise above 1.0 individual
is still considered to have gone extinct the first time it crossed below 1.0.

If the input 1lefkoProj object is a mixture of two or more other lefkoProj objects, then mileposts
will be given relative to the maximum number of time steps noted.

Examples

library(lefko3)
data(cypdata)

data(cypa_data)
sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)

stagevector <- c(”SD", "P1", "P2", "P3", "SL”, "D", "XSm", "Sm", "Md", "Lg",
"XLg")

repvector <- c(90, 0, @, @, 0, @, 1, 1, 1, 1, 1)
obsvector <- c(0, 9, 0, @, 9, @, 1, 1, 1, 1, 1)
matvector <- c(0, @, @, 0, 0, 1, 1, 1, 1, 1, 1)
immvector <- c(o, 1, 1, 1, 1, o, 0, 0, @, 0, 0)

propvector <- c(1, o0, 0, 0, @, 0, 0, 0, @0, 0, Q)
indataset <- c(0, 0, 0, 0, @, 1, 1, 1, 1, 1, 1)
binvec <- c(@, @, 9, @, 0, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cycaraw_v1 <- verticalize3(data = cypdata, noyears = 6, firstyear = 2004,
patchidcol = "patch”, individcol = "plantid”, blocksize = 4,
sizeacol = "Inf2.04", sizebcol = "Inf.Q4", sizeccol = "Veg.04",
repstracol = "Inf.04", repstrbcol = "Inf2.04", fecacol = "Pod.04",

summary.adaptProj

stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,
NRasRep = TRUE)

cyparaw_v1 <- verticalize3(data = cypa_data, noyears = 18, firstyear = 1994,

individcol = "plant_id", blocksize = 2, sizeacol = "Inf.94",
sizebcol = "Veg.94", repstracol = "Inf.94", fecacol = "Inf.94",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypsupp2r <- supplemental(stage3 = c("Sb", "P1", "P2", "P3", "SL", "D",
"Xsm”, "sm”, "SD", "P1"),
stage2 = c("sSD", "sb", "P1", "P2", "P3", "SL", "SL", "SL", "rep",
"rep"),
eststage3 = c(NA, NA, NA, NA, NA, "D", "XSm", "Sm", NA, NA),
eststage2 = c(NA, NA, NA, NA, NA, "XSm", "XSm", "XSm", NA, NA),
givenrate = c(0.10, 0.20, 0.20, 0.20, 0.25, NA, NA, NA, NA, NA),
multiplier = c(NA, NA, NA, NA, NA, NA, NA, NA, 0.5, 0.5),
type =c(1, 1, 1, 1, 1, 1, 1, 1, 3, 3),
stageframe = cypframe_raw, historical = FALSE)
cyp_supp_list1 <- list(cypsupp2r, cypsupp2r)

cycamatrix2r <- rlefko2(data = cycaraw_v1, stageframe = cypframe_raw,
year = "all", stages = c("stage3", "stage2"”, "stagel"),
size = c("size3added”, "size2added”), supplement = cypsupp2r,
yearcol = "year2"”, indivcol = "individ")

cypamatrix2r <- rlefko2(data = cyparaw_v1, stageframe = cypframe_raw,
year = "all"”, stages = c("stage3", "stage2", "stagel"),
size = c("size3added”, "size2added"), supplement = cypsupp2r,
yearcol = "year2", indivcol = "individ")

cyp_mpm_list <- list(cycamatrix2r, cypamatrix2r)

cyca2_start <- start_input(cycamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c(500, 100, 200))

cypa2_start <- start_input(cypamatrix2r, stage2 = c("SD", "P1", "P2"),
value = c (5000, 1000, 2000))

cyp_start_list <- list(cyca2_start, cypa2_start)

cyp2_dv <- density_input(cypamatrix2r, stage3 = c("SD", "P1"),
stage2 = c("rep”, "rep"), style = c(1, 1), alpha = c(0.5, 1.2),
beta = c(1.0, 2.0), type = c(2, 1))

cyp_dv_list <- list(cyp2_dv, cyp2_dv)

cyp_comm_proj <- project3(mpms = cyp_mpm_list, starts = cyp_start_list,
density = cyp_dv_list, times = 10)

summary (cyp_comm_proj)

32 ta_skeleton

ta_skeleton Create Skeleton Data Frame for Trait Variation for Invasion Analysis

Description

Function ta_skeleton() creates a core data frame that can be modified by users to provide the
core variation in transition elements and vital rates to use in invasion analysis. The resulting data
frame should be used as input in function invade3().

Usage

ta_skeleton(rows = 10L)

Arguments

rows The number of rows needed in the data frame. Defaults to 10.

Value

A data frame of class adaptAxis, with the following columns:

variant Denotes each variant in order, with each row corresponding to a novel variant.

stage3 Stage at occasion #+1 in the transition to be replaced.

stage2 Stage at occasion ¢ in the transition to be replaced.

stagel Stage at occasion #-1 in the transition to be replaced.

age3 Age at occasion 7+1 in the transition to be replaced.

age? Age at occasion ¢ in the transition to be replaced.

eststage3 Stage at occasion #+1 in the transition to replace the transition designated by
stage3, stage2, and stagel.

eststage? Stage at occasion 7 in the transition to replace the transition designated by stage3,
stage2, and stagel.

eststagel Stage at occasion f-1 in the transition to replace the transition designated by
stage3, stage?2, and stagel.

estage3 Age at occasion #+1 in the transition to replace the transition designated by age?2.

estage2 Age at occasion ¢ in the transition to replace the transition designated by age2.

givenrate A constant to be used as the value of the transition.

offset A constant value to be added to the transition or proxy transition.

multiplier A multiplier for proxy transitions or for fecundity.

convtype Designates whether the transition from occasion ¢ to occasion 7+1 is a survival

transition probability (1), a fecundity rate (2), or a fecundity multiplier (3).

convtype_t12 Designates whether the transition from occasion #-1 to occasion ¢ is a survival
transition probability (1), a fecundity rate (2).

ta_skeleton

surv_dev

obs_dev

size_dev

sizeb_dev

sizec_dev

repst_dev

fec_dev

jsurv_dev

jobs_dev

jsize_dev

jsizeb_dev

jsizec_dev

jrepst_dev

jmatst_dev

Examples

33

A numeric vector giving the deviations to the y-intercept of the vital rate model
for survival probability.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for observation probability.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for primary size transition.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for secondary size transition.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for tertiary size transition.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for reproduction probability.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for fecundity.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for juvenile survival probability.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for juvenile observation probability.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for juvenile primary size transition.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for juvenile secondary size transition.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for juvenile tertiary size transition.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for juvenile reproduction probability.

A numeric vector giving the deviations to the y-intercept of the vital rate model
for maturity status.

current_traits <- ta_skeleton(4)

current_traits$stage3 <- c("Dorm”, "Dorm”, "Sd11", NA)
current_traits$stage2 <- c("cut”, "vVor", "rep", NA)
current_traits$convtype <- c(1, 1, 2, NA)
current_traits$offset <- c(0.1, 0.2, 0.3, NA)
current_traits$surv_dev <- c(NA, NA, NA, 0.1)

34

trait_axis

trait_axis

Create a Data Frame of Trait Data for Invasion Analysis

Description

Function trait_axis() provides all necessary data for invasion analysis. It lists the specific vari-
ations to MPMs for each variant run. Variants can be given via overwritten matrix elements, proxy
matrix elements, additive offsets on matrix elements, matrix element multipliers, and additive off-
sets to y-intercepts in vital rate models.

Usage

trait_axis(

historical = NULL,
stagebased = NULL,
agebased = NULL,
stageframe = NULL,
stage3 = NULL,
stage2 = NULL,
stagel = NULL,
age3 = NULL,

age2 = NULL,
eststage3 = NULL,
eststage2 = NULL,
eststagel = NULL,
estage3 = NULL,
estage2 = NULL,
givenrate = NULL,
offset = NULL,
multiplier = NULL,
type = NULL,
type_t12 = NULL,
surv_dev = NULL,
obs_dev = NULL,
size_dev = NULL,
sizeb_dev = NULL,
sizec_dev = NULL,
repst_dev = NULL,
fec_dev = NULL,
jsurv_dev = NULL,
jobs_dev = NULL,
jsize_dev = NULL,
jsizeb_dev = NULL,
jsizec_dev = NULL,
jrepst_dev = NULL,
jmatst_dev = NULL

trait_axis

Arguments

historical

stagebased

agebased

stageframe

stage3

stage2

stagel

age3

age?2

eststage3

eststage?2

eststagel

estage3

estage?2

givenrate

offset

35

A single logical value indicating whether the MPMs intended will be historical
or ahistorical. Defaults to TRUE.

A single logical value indicating whether the MPM will be stage-based or age-
by-stage. Defaults to TRUE.

A single logical value indicating whether the MPM will be age-based or age-by-
stage. Defaults to FALSE.

The stageframe used to produce the MPM. Required if producing any stage-
based or age-by-stage MPM. Must be omitted for purely age-based MPMs.

String vector of stage names in occasion 7+1 in the transition to be affected.
Abbreviations for groups of stages are also usable (see Notes). Required in all
stage-based and age-by-stage MPMs.

String vector of stage names in occasion ¢ in the transition to be affected. Ab-
breviations for groups of stages are also usable (see Notes). Required in all
stage-based and age-by-stage MPMs.

String vector of stage names in occasion #-1 in the transition to be affected.
Only needed if a historical matrix is to be produced. Abbreviations for groups
of stages are also usable (see Notes). Required for historical stage-based MPMs.

An integer vector of the ages in occasion #+1 to use in transitions to be affected.
Required for all age- and age-by-stage MPMs.

An integer vector of the ages in occasion ¢ to use in transitions to be affected.
Required for all age- and age-by-stage MPMs.

String vector of stage names to replace stage3 in a proxy transition. Only
needed if a transition will be replaced by another estimated transition, and only
in stage-based and age-by-stage MPMs.

String vector of stage names to replace stage2 in a proxy transition. Only
needed if a transition will be replaced by another estimated transition, and only
in stage-based and age-by-stage MPMs.

String vector of stage names to replace stagel in a proxy historical transition.
Only needed if a transition will be replaced by another estimated transition, and
the matrix to be estimated is historical and stage-based. Stage NotAlive is also
possible for raw hMPMs as a means of handling the prior stage for individuals
entering the population in occasion 7.

Integer vector of age at time +1 to replace age3 in a proxy transition. Only
needed if a transition will be replaced by another estimated transition, and only
in age-based and age-by-stage MPMs.

Integer vector of age at time ¢ to replace age?2 in a proxy transition. Only needed
if a transition will be replaced by another estimated transition, and only in age-
based and age-by-stage MPMs.

A numeric vector of fixed rates or probabilities to replace for the transition de-
scribed by stage3, stage2, stagel, and/or age?2.

A numeric vector of fixed numeric values to add to the transitions described by
stage3, stage2, stagel, and/or age2.

36

multiplier

type

type_t12

surv_dev

obs_dev

size_dev

sizeb_dev

sizec_dev

repst_dev

fec_dev

jsurv_dev

jobs_dev

jsize_dev

jsizeb_dev

jsizec_dev

jrepst_dev

jmatst_dev

trait_axis

A numeric vector of multipliers for the transition described by stage3, stage2,
stagel, and/or age2, or for the proxy transitions described by eststage3s,
eststage?, eststagel, and/or estage?2. Defaults to 1.

Integer vector denoting the kind of transition between occasions ¢ and 7+1 to be
replaced. This should be entered as 1, S, or s for the replacement of a survival
transition; 2, F, or f for the replacement of a fecundity transition; or 3, R, or r for
a fecundity set value / general multiplier. If empty or not provided, then defaults
to 1 for survival transition.

An optional integer vector denoting the kind of transition between occasions
t-1 and t. Only necessary if a historical MPM in deVries format is desired.
This should be entered as 1, S, or s for a survival transition; or 2, F, or f for a
fecundity transitions. Defaults to 1 for survival transition, with impacts only on
the construction of deVries-format hMPMs.

An optional vector of numeric deviations to the y-intercept of the survival model
used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the observation
model used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the primary size
model used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the secondary size
model used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the tertiary size
model used in function-based MPM creation. Defaults to NA for all values.
An optional vector of numeric deviations to the y-intercept of the reproduction
model used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the fecundity
model used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the juvenile sur-
vival model used in function-based MPM creation. Defaults to NA for all values.

An optional vector of numeric deviations to the y-intercept of the juvenile ob-
servation model used in function-based MPM creation. Defaults to NA for all
values.

An optional vector of numeric deviations to the y-intercept of the juvenile pri-
mary size model used in function-based MPM creation. Defaults to NA for all
values.

An optional vector of numeric deviations to the y-intercept of the juvenile sec-
ondary size model used in function-based MPM creation. Defaults to NA for all
values.

An optional vector of numeric deviations to the y-intercept of the juvenile ter-
tiary size model used in function-based MPM creation. Defaults to NA for all
values.

An optional vector of numeric deviations to the y-intercept of the juvenile re-
production model used in function-based MPM creation. Defaults to NA for all
values.

An optional vector of numeric deviations to the y-intercept of the juvenile matu-
rity model used in function-based MPM creation. Defaults to NA for all values.

trait_axis

Value

37

A data frame of class adaptAxis. This object can be used as input in function invade3().

Variables in this object include the following:

variant
stage3
stage2
stagel
ages

age2
eststage3

eststage?

eststagel

estage3
estage?
givenrate
offset
multiplier

convtype

convtype_t12

surv_dev
obs_dev
size_dev
sizeb_dev
sizec_dev
repst_dev
fec_dev
jsurv_dev

jobs_dev

jsize_dev

jsizeb_dev

Denotes each variant in order, with each row corresponding to a novel variant.
Stage at occasion #+1 in the transition to be replaced.

Stage at occasion ¢ in the transition to be replaced.

Stage at occasion #-1 in the transition to be replaced.

Age at occasion #+1 in the transition to be replaced.

Age at occasion ¢ in the transition to be replaced.

Stage at occasion #+1 in the transition to replace the transition designated by
stage3, stage2, and stagel.

Stage at occasion ¢ in the transition to replace the transition designated by stage3,
stage2, and stagel.

Stage at occasion f-1 in the transition to replace the transition designated by
stage3, stage2, and stagel.

Age at occasion 7+1 in the transition to replace the transition designated by age3.
Age at occasion ¢ in the transition to replace the transition designated by age2.
A constant to be used as the value of the transition.

A constant value to be added to the transition or proxy transition.

A multiplier for proxy transitions or for fecundity.

Designates whether the transition from occasion ¢ to occasion 7+1 is a survival
transition probability (1), a fecundity rate (2), or a fecundity multiplier (3).

Designates whether the transition from occasion #-1 to occasion ¢ is a survival
transition probability (1), a fecundity rate (2).

Numeric deviations to the y-intercept of the vital rate model of survival.
Numeric deviations to the y-intercept of the vital rate model of observation.
Numeric deviations to the y-intercept of the vital rate model of primary size.
Numeric deviations to the y-intercept of the vital rate model of secondary size.
Numeric deviations to the y-intercept of the vital rate model of tertiary size.
Numeric deviations to the y-intercept of the vital rate model of reproduction.
Numeric deviations to the y-intercept of the vital rate model of fecundity.
Numeric deviations to the y-intercept of the vital rate model of juvenile survival.

Numeric deviations to the y-intercept of the vital rate model of juvenile obser-
vation.

Numeric deviations to the y-intercept of the vital rate model of juvenile primary
size.

Numeric deviations to the y-intercept of the vital rate model of juvenile sec-
ondary size.

38

trait_axis
jsizec_dev Numeric deviations to the y-intercept of the vital rate model of juvenile tertiary
size.
jrepst_dev Numeric deviations to the y-intercept of the vital rate model of juvenile repro-
duction.
jmatst_dev Numeric deviations to the y-intercept of the vital rate model of juvenile maturity.

Notes

Negative values are not allowed in givenrate and multiplier input, but are allowed in of fset, if
values are to be subtracted from specific estimated transitions. Stage entries should not be used for
purely age-based MPMs, and age entries should not be used for purely stage-based MPMs.

Entries in stage3, stage2, and stagel can include abbreviations for groups of stages. Use rep
if all reproductive stages are to be used, nrep if all mature but non-reproductive stages are to be
used, mat if all mature stages are to be used, immat if all immature stages are to be used, prop if all
propagule stages are to be used, npr if all non-propagule stages are to be used, obs if all observable
stages are to be used, nobs if all unobservable stages are to be used, and leave empty or use all
if all stages in stageframe are to be used. Also use groupX to denote all stages in group X (e.g.
group1 will use all stages in the respective stageframe’s group 1).

Type 3 conversions are referred to as fecundity set values, or general fecundity multipliers. These
set the transitions to be used as fecundity transitions. Transitions set here will be interpreted as being
generally reproductive, meaning that the from and to stages will be used to determine the general
fecundity transitions to incorporate into stage-based MPMs, while the age portion of the input will
be used to incorporate the actual multiplier(s) specified. If only stage transitions at certain ages are
expected to be the sole contributors to fecundity, then type 2 conversions should also be included in
the supplement (Type 1 and 2 conversions can be purely age-specific, and do not set reproductive
transitions in MPM creation). For example, if all stage 2 to stage 3 transitions above age 2 yield
fecundity, then stage 2 to stage 3 can be set tomultiplier = 1.0 with convtype = 3, and the same
transition for age2 = c(1, 2) can be set tomultiplier = c(0, 0).

Several operations may be included per transition. Operations on the same row of the resulting data
frame are generally handled with given rate substitutions first, then with proxy transitions, then by
additive offsets, and finally by multipliers. This order can be manipulated by ordering operations
across rows, with higher numbered rows in the data frame being performed later.

See Also

ta_skeleton()

Examples

library(lefko3)
data(cypa_data)

sizevector <- c(o, 0, 0, 0, 0, 0, 1, 2.5, 4.5, 8, 17.5)

stagevector <- c("sSD", "P1", "P2", "P3", "SL", "D", "XSm", "Sm", "Md", "Lg",
IIXLgII)

repvector <- c(0, 0, 0, 0, 0, o0, 1, 1, 1, 1, 1)

obsvector <- c(0, 9, 0, @, 0, @, 1, 1, 1, 1, 1)

trait_axis

matvector <- c(@, 0, o0, 0, 0,
immvector <- c(o, 1, 1, 1, 1, 0, O,
propvector <- c(1, o, 0, 0, 0, 0, 0, 0, 0, @
indataset <- c(0, 0, @, @, 0, 1, 1, 1, 1, 1, 1)

binvec <- c(0, @, 9, @, @, 0.5, 0.5, 1, 1, 2.5, 7)

cypframe_raw <- sf_create(sizes = sizevector, stagenames = stagevector,
repstatus = repvector, obsstatus = obsvector, matstatus = matvector,
propstatus = propvector, immstatus = immvector, indataset = indataset,
binhalfwidth = binvec)

cypraw_v1 <- verticalize3(data = cypa_data, noyears = 18, firstyear = 1994,

individcol = "plant_id"”, blocksize = 2, sizeacol = "Inf.94",
sizebcol = "Veg.94", repstracol = "Inf.94", fecacol = "Inf.94",
stageassign = cypframe_raw, stagesize = "sizeadded”, NAas@ = TRUE,

NRasRep = TRUE)

cypa_ta <- trait_axis(stageframe = cypframe_raw,
stage3 = c("P1", "P1", "P1", NA, NA, NA),
stage2 = c("rep”, "rep", "rep”, NA, NA, NA),
multiplier = c(0.5, 2.0, 10., NA, NA, NA), type = c(2, 2, 2, NA, NA, NA),
obs_dev = c(NA, NA, NA, 0.5, 2.0, 50), fec_dev = c(NA, NA, NA, -1000, 0, 1000))

Index

x datasets
cypa_data, 3

adapt3 (adapt3-package), 2
adapt3-package, 2

cypa_data, 3
density_input, 11, 24
equiv_input, 5, 22
invade3, 8, 15, 16, 32

plot.adaptInv, 15
plot.adaptProj, 18
project3, 6, 19, 20

summary.adaptInv, 27
summary.adaptProj, 29
supplemental, 9, 21

ta_skeleton, 32, 38
trait_axis, 34

40

	adapt3-package
	cypa_data
	equiv_input
	invade3
	plot.adaptInv
	plot.adaptProj
	project3
	summary.adaptInv
	summary.adaptProj
	ta_skeleton
	trait_axis
	Index

