The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Advanced Parsing with activatr

Daniel Schafer

activatr can parse additional information beyond the basic lat/lon data from GPX/TCX files, as well as sample the files for quicker manipulation.

All of the advanced functionality is included in the parse_gpx or parse_tcx function with optional arguments. As a reminder, this is what the default parsing would look like and return:

library(activatr)

# Get the running_example.gpx file included with this package.
filename <- system.file(
  "extdata",
  "running_example.gpx.gz",
  package = "activatr"
)

df <- parse_gpx(filename)
lat lon ele time
37.80405 -122.4267 17.0 2018-11-03 14:24:45
37.80406 -122.4267 16.8 2018-11-03 14:24:46
37.80408 -122.4266 17.0 2018-11-03 14:24:48
37.80409 -122.4266 17.0 2018-11-03 14:24:49
37.80409 -122.4265 17.2 2018-11-03 14:24:50

Parsing extension data

If your GPX file contains additional extension information, activatr can parse that as well. In this case, running_example.gpx contains heart rate, cadence, and temperature information. We can parse that by setting detail = "advanced" in parse_gpx:

df_advanced <- parse_gpx(filename, detail = "advanced")
lat lon ele time hr cad
37.80405 -122.4267 17.0 2018-11-03 14:24:45 102 68
37.80406 -122.4267 16.8 2018-11-03 14:24:46 104 73
37.80408 -122.4266 17.0 2018-11-03 14:24:48 107 89
37.80409 -122.4266 17.0 2018-11-03 14:24:49 110 89
37.80409 -122.4265 17.2 2018-11-03 14:24:50 112 89

Now we can do plots like heart rate over time, or a distribution of cadences:

library(ggplot2)
library(dplyr)
ggplot(df_advanced) +
  geom_line(aes(x = time, y = hr), color = "red")
ggplot(filter(df_advanced, cad > 80)) +
  geom_density(aes(x = cad * 2), fill = "blue", bw = 1)

Sampling datapoints

If you’re parsing many GPX files or GPX files sampled every second, you often don’t need a “full resolution” view of the activity. The every argument to parse_gpx allows you to only sample some points from the GPX, speeding up the parsing:

# Parsing as normal gets all of the rows, but takes longer
full_time <- system.time({
  df_full <- parse_gpx(filename)
})
nrow(df_full)
#> [1] 4433
full_time
#>    user  system elapsed 
#>   0.134   0.003   0.138

# Grabbing every hundredth data point runs much faster
sample_time <- system.time({
  df_sample <- parse_gpx(filename, every = 100)
})
nrow(df_sample)
#> [1] 44
sample_time
#>    user  system elapsed 
#>   0.021   0.001   0.022

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.